Skip to main content
Log in

Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Serine proteases are typically synthesized as proteolytically inactive zymogens that often become activated in a limited and highly localized manner. Consequently, determination of the spatial and temporal activation pattern of these molecules is of great importance to understanding the biological processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce a technique using fluorescent synthetic and protein-based inhibitors. With this approach we have detected a novel serine protease activity with a relative mobility of 37 kDa, localized to the surface of pole cells, the germ-line precursors, in embryos between nuclear cycles 11 and 14 in development. A second novel cell-specific protease activity was localized to the tissues of early gastrulating embryos. Microinjection of inhibitors into the perivitelline space of stage 2 embryos perturbed normal embryonic development. Fluorescein-conjugated chymotrypsin inhibitor and Bowman-Birk inhibitor labeled protease activity localized to the oocyte–somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–C
Fig. 3A–F
Fig. 4
Fig. 5A–D

Similar content being viewed by others

References

  • Abuelyaman AS, Hudig D, Woodard SL, Powers JC (1994) Fluorescent derivatives of diphenyl [1-(N-peptidylamino)alkyl]phosphonate esters: synthesis and use in the inhibition and cellular localization of serine proteases. Bioconjug Chem 5:400–405

    CAS  PubMed  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Bronner G, Jackle H (1991) Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech Dev 35:205–211

    CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

  • Casali A, Casanova J (2001) The spatial control of Torso RTK activation: a C-terminal fragment of the Trunk protein acts as a signal for Torso receptor in the Drosophila embryo. Development 128:1709–1715

    CAS  PubMed  Google Scholar 

  • Chasan R, Jin Y, Anderson KV (1992) Activation of the Easter zymogen is regulated by five other genes to define dorsal-ventral polarity in the Drosophila embryo. Development 115:607–616

    CAS  PubMed  Google Scholar 

  • Dissing M, Giordano H, DeLotto R (2001) Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J 20:2387–2393

    CAS  PubMed  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    CAS  PubMed  Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    CAS  PubMed  Google Scholar 

  • Fessler JH, Fessler LI (1989) Drosophila extracellular matrix. Annu Rev Cell Biol 5:309–339

    CAS  PubMed  Google Scholar 

  • Furriols M, Casanova J (2003) In and out of Torso RTK signalling. EMBO J 22:1947–1952

    CAS  PubMed  Google Scholar 

  • Gettins P, Patston PA, Schapira M (1992) Structure and mechanism of action of serpins. Hematol Oncol Clin North Am 6:1393–1408

    CAS  PubMed  Google Scholar 

  • Hecht PM, Anderson KV (1992) Extracellular proteases and embryonic pattern formation. Trends Cell Biol 2:197–202

    CAS  PubMed  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

  • Kisiel W, Fujikawa K (1983) Enzymological aspects of blood coagulation. Behring Inst Mitt 73:29–42

    CAS  PubMed  Google Scholar 

  • LeMosy EK, Tan YQ, Hashimoto C (2001) Activation of a protease cascade involved in patterning the Drosophila embryo. Proc Natl Acad Sci U S A 98:5055–5060

    Google Scholar 

  • Lojda Z (1996) The use of substrates with 7-amino-3-trifluoromethylcoumarine (AFC) leaving group in the localization of protease activities in situ. Acta Histochem 98:215–228

    CAS  PubMed  Google Scholar 

  • Milner JM, Elliott SF, Cawston TE (2001) Activation of procollagenases is a key control point in cartilage collagen degradation: interaction of serine and metalloproteinase pathways. Arthritis Rheum 44:2084–2096

    CAS  PubMed  Google Scholar 

  • Neurath H (1986) The versatility of proteolytic enzymes. J Cell Biochem 32:35–49

    CAS  PubMed  Google Scholar 

  • Neurath H (1991) Proteolytic processing and regulation. Enzyme 45:239–243

    CAS  PubMed  Google Scholar 

  • Pino-Heiss S, Schubiger G (1989) Extracellular protease production by Drosophila imaginal discs. Dev Biol 132:282–291

    CAS  PubMed  Google Scholar 

  • Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM (2000) Biological annotation of the Drosophila genome sequence. Novartis Found Symp 229:79–82

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Spradling AC (1993) Germline cysts: communes that work. Cell 72:649–651

    CAS  PubMed  Google Scholar 

  • Stein D, Nusslein-Volhard C (1992) Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68:429–440

    CAS  PubMed  Google Scholar 

  • Stein D, Roth S, Vogelsang E, Nusslein-Volhard C (1991) The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell 65:725–735

    CAS  PubMed  Google Scholar 

  • Swanson MM, Poodry CA (1980) Pole cell formation in Drosophila melanogaster. Dev Biol 75:419–430

    CAS  PubMed  Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    Article  CAS  PubMed  Google Scholar 

  • Travis J, Guzdek A, Potempa J, Watorek W (1990) Serpins: structure and mechanism of action. Biol Chem Hoppe Seyler 371(suppl):3–11

    CAS  PubMed  Google Scholar 

  • van der Meer JM, Jaffe LF (1983) Elemental composition of the perivitelline fluid in early Drosophila embryos. Dev Biol 95:249–252

    PubMed  Google Scholar 

  • Verheyen E, Cooley L(1994) Looking at oogenesis. Methods Cell Biol 44:545–561

    CAS  PubMed  Google Scholar 

  • Williams MJ (2001) Regulation of antibacterial and antifungal innate immunity in fruitflies and humans. Adv Immunol 79:225–259

    CAS  PubMed  Google Scholar 

  • Zalokar M, Erk I (1976) Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J Micro Biol Cell 25:97–106

    Google Scholar 

Download references

Acknowledgements

We would like to thank Yvonne DeLotto for excellent technical assistance with the microinjections and Jakob Winther for constructive experimental criticism. This work was supported by the Danish Natural Science Research Council, the Danish Cancer Fund, the Vera and Carl Johan Michaelsens Legacy, and the US National Science Foundation to R.D., and by grants from the National Institute of General Medical Sciences (grants GM54401 and GM61964) to J.C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert DeLotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsen, R.K., Ono, S., Powers, J.C. et al. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers. Histochem Cell Biol 123, 51–60 (2005). https://doi.org/10.1007/s00418-004-0734-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0734-5

Keywords

Navigation