Skip to main content

Advertisement

Log in

Factors affecting corneal hysteresis in normal eyes

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate factors affecting corneal hysteresis (CH) in normal eyes.

Methods

We examined 86 normal eyes of 43 healthy volunteers (age, 39.1 ± 14.5 years (mean ± standard deviation); range, 19 to 68 years; gender, 26 men, 60 women; manifest refraction, −2.25 ± 2.89 diopters (D); range, −9.13 to 3.88 D). We quantitatively assessed the value of CH using an Ocular Response Analyzer™ (Reichert Ophthalmic Instruments). We carried out this measurement three times, and the average value was used for statistical analysis. Multiple regression analysis was used to assess the relevant factors of the CH.

Results

The mean CH was 10.2 ± 1.3 mmHg. Explanatory variables relevant to the CH were, in order of magnitude of influence, the central corneal thickness (CCT) (partial regression coefficient B = 0.022, p < 0.0001), and the intraocular pressure (IOP) (B = -0.119, p = 0.04). No significant correlation was seen with other clinical factors such as age, gender, manifest refraction, or mean keratometric readings.

Conclusions

Eyes with thinner CCT and eyes with higher IOP are more predisposed to have lower CH. Refractive surgeons should, from a biomechanical viewpoint, take not only CCT but also IOP into consideration before performing keratorefractive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roberts C (2002) Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg 18:S589–S592

    PubMed  Google Scholar 

  2. Kamiya K, Miyata K, Tokunaga T et al (2004) Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Cornea 23:S59–S64

    Article  PubMed  Google Scholar 

  3. Jaycock PD, Lobo L, Ibrahim J et al (2005) Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery. J Cataract Refract Surg 31:175–184

    Article  PubMed  Google Scholar 

  4. Deenadayalu C, Mobasher B, Rajan SD, Hall GW (2006) Refractive change induced by the LASIK flap in a biomechanical finite element model. J Refract Surg 22:286–292

    PubMed  Google Scholar 

  5. Dupps WJ Jr, Wilson SE (2006) Biomechanics and wound healing in the cornea. Exp Eye Res 83:709–720

    Article  PubMed  CAS  Google Scholar 

  6. Orssengo GJ, Pye DC (1999) Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 61:551–572

    Article  PubMed  CAS  Google Scholar 

  7. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement; quantitative analysis. J Cataract Refract Surg 31:146–155

    Article  PubMed  Google Scholar 

  8. Herndon LW (2006) Measuring intraocular pressure-adjustments for corneal thickness and new technologies. Curr Opin Ophthalmol 17:115–119

    Article  PubMed  Google Scholar 

  9. Bryant MR, McDonnell PJ (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng 118:473–481

    Article  PubMed  CAS  Google Scholar 

  10. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162

    Article  PubMed  Google Scholar 

  11. Lu F, Xu S, Qu J, Shen M, Wang X, Fang H, Wang J (2007) Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure. Am J Ophthalmol 143:616–622

    Article  PubMed  Google Scholar 

  12. Lam A, Chen D, Chiu R, Chui WS (2007) Comparison of IOP measurements between ORA and GAT in normal Chinese. Optom Vis Sci 84:909–914

    PubMed  Google Scholar 

  13. Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA (2007) Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma 16:581–588

    Article  PubMed  Google Scholar 

  14. Shah S, Laiquzzaman M, Cunliffe I, Mantry S (2006) The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye 29:257–262

    Article  PubMed  Google Scholar 

  15. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL (2007) Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 33:1371–1375

    Article  PubMed  Google Scholar 

  16. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ (2007) Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol 143:39–47

    Article  PubMed  Google Scholar 

  17. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48:3026–3031

    Article  PubMed  Google Scholar 

  18. Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF (2006) Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci 47:5337–5347

    Article  PubMed  Google Scholar 

  19. Toshino A, Uno T, Ohashi Y et al (2005) Transient keratectasia caused by intraocular pressure elevation after laser in situ keratomileusis. J Cataract Refract Surg 31:202–204

    Article  PubMed  Google Scholar 

  20. Hiatt JA, Wachler BS, Grant C (2005) Reversal of laser in situ keratomileusis-induced ectasia with intraocular pressure reduction. J Cataract Refract Surg 31:1652–1655

    Article  PubMed  Google Scholar 

  21. Kirwan C, O’Keefe M, Lanigan B (2006) Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyser. Am J Ophthalmol 142:990–992

    Google Scholar 

  22. Luce D (2006) Methodology for cornea compensated IOP and corneal resistance factor for Reichert ocular response analyzer. ARVO abstract 2266. Invest Ophthalmol Vis Sci

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Kamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiya, K., Hagishima, M., Fujimura, F. et al. Factors affecting corneal hysteresis in normal eyes. Graefes Arch Clin Exp Ophthalmol 246, 1491–1494 (2008). https://doi.org/10.1007/s00417-008-0864-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0864-x

Keywords

Navigation