Skip to main content
Log in

Experimental study on rheological and thermophysical properties of seawater with surfactant additive—part I: rheological properties

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of seawater with the addition of surfactant additive (cetyltrimethyl ammonium chloride (CTAC)/sodium salicylate (NaSal)) are measured at different temperatures, including shear viscosity and first normal stress difference (N1). The effects of the temperature, the salts, and CTAC/NaSal concentration on the rheological properties of test solutions are investigated, and the corresponding influence mechanisms are analyzed. It shows that the addition of salt can decrease the shear viscosities of the solutions, and also decrease N1 and even eliminate the sharp augment of N1 above a certain shear rate. The growing elasticity can be characterized by the increase of the initial shear rate for shear-thickening inception. High temperature can also remove the sharp increase of N1 with salt. Nevertheless, the increase of CTAC/NaSal concentration can withstand the elimination of the sharp augment of N1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berret JF, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P (1998) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677–682

    Article  CAS  Google Scholar 

  • Berret JF, Lerouge S, Decruppe JP (2002) Kinetics of the shear-thickening transition observed in dilute surfactant solutions and investigated by flow birefringence. Langmuir 18:7279–7286

    Article  CAS  Google Scholar 

  • Cai WH, Li FC, Zhang HN, Li XB, Yu B, Wei JJ, Kawaguchi Y, Hishida K (2009) Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis. Phys Fluids 21:115103

    Article  Google Scholar 

  • Cai WH, Li FC, Zhang HN (2010) DNS study of decaying homogeneous isotropic turbulence with polymer additives. J Fluid Mech 665:334–356

    Article  Google Scholar 

  • Choi HJ, Jhon MS (1996) Polymer-induced turbulent drag reduction. Ind Eng Chem Res 35:2993–2998

    Article  CAS  Google Scholar 

  • Duan LQ (2011) Biogeochemical characteristics of trace rare elements and environmental change in the Bohai Bay and the Changjiang estuary. Dissertation, Graduate School of Chinese Academy of Sciences

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717

    Article  CAS  Google Scholar 

  • Fabuss BM, Korosi A, Othmer DF (1969) Viscosities of aqueous solutions of several electrolytes present in sea water. J Chem Eng Data 14:192–197

    Article  CAS  Google Scholar 

  • Frost W, Kippenhan CJ (1967) Bubble growth and heat-transfer mechanisms in the forced convection boiling of water containing a surface active agent. Int J Heat Mass Transf 10:931–949

    Article  CAS  Google Scholar 

  • Fu Z, Otsuki T, Motozawa M, Kurosawa T, Yu B, Kawaguchi Y (2014) Experimental investigation of polymer diffusion in the drag-reduced turbulent channel flow of inhomogeneous solution. Int J Heat Mass Transf 77:860–873

    Article  CAS  Google Scholar 

  • Gamez-Corrales R, Berret JF, Walker LM, Oberdisse J (1999) Shear-thickening dilute surfactant solutions: equilibrium structure as studied by small-angle neutron scattering. Langmuir 15:6755–6763

    Article  CAS  Google Scholar 

  • Ge W, Kesselman E, Talmon Y, Hart DJ, Zakin JL (2008) Effects of chemical structures of para-halobenzoates on micellenanostructure, drag reduction and rheological behaviorsof dilute CTAC solutions. J Non-Newton Fluid Mech 154:1–12

    Article  CAS  Google Scholar 

  • Ghalavand Y, Hatamipour MS, Rahimi A (2015) A review on energy consumption of desalination processes. Desalin Water Treat 54:1526–1541

    CAS  Google Scholar 

  • Gollan A, Tulin MP, Rudy SL (1970) Development and model tests of a surface ship additive system. Hydronautics Inc., Technical Report 909–1

  • Harbin Water Affairs Bureau (2016) Result of water quality detection for municipal water supply in main urban area of Harbin. Website of Harbin Water Affairs Bureau, August 3, 2016. http://www.hrbwrb.gov.cn/n_zwgk/z_tzgg/2016/08/10931.html

  • Hartmann V, Cressely R (1997) Simple salts effects on the characteristics of the shear thickening exhibited by an aqueous micellar solution of CTAB/NaSal. Europhys Lett 40:691–696

    Article  CAS  Google Scholar 

  • Hartmann V, Cressely R (1998) Occurrence of shear thickening in aqueous micellar solutions of CTAB with some added organic counterions. Colloid Polym Sci 276:169–175

    Article  CAS  Google Scholar 

  • Hetsroni G, Zakin JL, Lin Z, Mosyak A, Pancallo EA, Rozenblit R (2001) The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. Int J Heat Mass Transf 44:485–497

    Article  CAS  Google Scholar 

  • Hirschmüller H (1953) Physical properties of sucrose. In: Honig P (ed) Principles of sugar technology. Elsevier Publishing Company, Amsterdam, pp 18–74

    Google Scholar 

  • Hofmann S, Rauscher A, Hoffmann H (1991) Shear induced micellar structures. Ber Bunsenges Phys Chem 95:153–164

    Article  CAS  Google Scholar 

  • Hoyt JW (1972) A freeman scholar lecture: the effect of additives on fluid friction. J Basic Eng 94:258–285

    Article  CAS  Google Scholar 

  • Hu GF (2006) Study on seawater pretreatment by coagulation/adsorption/microfiltration process. Dissertation, Tianjin University

  • Hu Y, Matthys EF (1997a) Effect of metal ions and compounds on the rheological properties of a drag-reducing cationic surfactant solution exhibiting shear-induced structure formation. J Colloid Interface Sci 186:352–359

    Article  CAS  Google Scholar 

  • Hu Y, Matthys EF (1997b) Evaluation of micellar overlapping parameters for a drag-reducing cationic surfactant system: light scattering and viscometry. Langmuir 13:4995–5000

    Article  CAS  Google Scholar 

  • Hu YT, Wang SQ, Jamieson AM (1993) Rheological and flow birefringence studies of a shear-thickening complex fluid—a surfactant model system. J Rheol 37:531–546

    Article  CAS  Google Scholar 

  • Isdale JD, Spence CM, Tudhope JS (1972) Physical properties of sea water solutions: viscosity. Desalination 10:319–328

    Article  CAS  Google Scholar 

  • Jiang SH, Chen J (2016) Analysis of impact caused by water quality factor on desalination project in Beijing. China Water Resour 20–22

  • Jiang CX, Li FC (2014a) Numerical study of natural supercavitation influenced by rheological properties of turbulent drag-reducing additives. Adv Mech Eng 6:275316

    Article  Google Scholar 

  • Jiang CX, Li FC (2014b) Experimental and numerical study of water entry supercavity influenced by turbulent drag-reducing additives. Adv Mech Eng 6:280643

    Article  Google Scholar 

  • Jiang CX, Shuai ZJ, Zhang XY, Li WY, Li FC (2016a) Numerical study on the transient behavior of water-entry supercavitating flow around a cylindrical projectile influenced by turbulent drag-reducing additives. Appl Therm Eng 104:450–460

    Article  Google Scholar 

  • Jiang CX, Shuai ZJ, Zhang XY, Li WY, Li FC (2016b) Numerical study on evolution of axisymmetric natural supercavitation influenced by turbulent drag-reducing additives. Appl Therm Eng 107:797–803

    Article  Google Scholar 

  • Krümmel O (1907) Handbuch der Ozeanographie, Bd. 1. Engelhorn, Stuttgart

  • Lerouge S, Berret JF (2009) Shear-induced transitions and instabilities in surfactant wormlike micelles. In: Dusek K, Joanny JF (eds) Polymer characterization, Advances in polymer science, vol 230. Springer, Berlin, pp 1–71

    Chapter  Google Scholar 

  • Li P, Kawaguchi Y, Daisaka H, Yabe A, Hishida K, Maeda M (2001a) Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet. J Heat Transf 123:779–789

    Article  CAS  Google Scholar 

  • Li PW, Kawaguchi Y, Yabe A (2001b) Transitional heat transfer and turbulent characteristics of drag-reducing flow through a contracted channel. J Enhanc Heat Transf 8:23–40

    Article  Google Scholar 

  • Li FC, Kawaguchi Y, Hishida K (2004) Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys Fluids 16:3281–3295

    Article  CAS  Google Scholar 

  • Li FC, Kawaguchi Y, Yu B, Wei JJ, Hishida K (2008) Experimental study of drag-reduction mechanism for a dilute surfactant solution flow. Int J Heat Mass Transf 51:835–843

    Article  Google Scholar 

  • Li W, Wu XY, Luo Z, Yao SC, Xu JL (2011) Heat transfer characteristics of falling film evaporation on horizontal tube arrays. Int J Heat Mass Transf 54:1986–1993

    Article  Google Scholar 

  • Li FC, Yu B, Wei JJ, Kawaguchi Y (2012) Turbulent drag reduction by surfactant additives. Wiley, Singapore

    Google Scholar 

  • Lienhard JH, Antar MA, Bilton A, Blanco J, Zaragoza G (2012) Solar desalination. In: Chen G, Prasad V, Jaluria Y, Karni J (eds) Annual review of heat transfer, vol 15. Begell House, New York, pp 277–347

    Google Scholar 

  • Likhachev DS (2013) Study on the hydrodynamic characteristics of rotational supercavitating evaporator. Dissertation, Harbin Institute of Technology

  • Likhachev DS, Li FC (2013) Large-scale water desalination methods: a review and new perspectives. Desalt Water Treat 51:2836–2849

    Article  Google Scholar 

  • Likhachev DS, Li FC (2014) Modeling of rotational supercavitating evaporator and the geometrical characteristics of supercavity within. Sci China Phys Mech Astron 57:541–554

    Article  CAS  Google Scholar 

  • Likhachev DS, Li FC, Kulagin VA (2014) Experimental study on the performance of a rotational supercavitating evaporator for desalination. Sci China Technol Sci 57:2115–2130

    Article  CAS  Google Scholar 

  • Lin ZQ, Zheng Y, Talmon Y, Maxson A, Zakin JL (2016) Comparison of the effects of methyl- and chloro-substituted salicylate counterions on drag reduction and rheological behavior and micellar formation of a cationic surfactant. Rheol Acta 55:117–123

    Article  CAS  Google Scholar 

  • Liu JJ, Wang CY, Xu L (2005) Adsorption kinetics of surfactant at air/solution interface. Chem Ind Eng 22:4–7

    Google Scholar 

  • Lu B, Zheng Y, Davis HT, Scriven LE, Talmon Y, Zakin JL (1998) Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems. Rheol Acta 37:528–548

    Article  CAS  Google Scholar 

  • Macosko CW, Larson RG (1994) Rheology: principles, measurements, and applications. Wiley-VCH, New York

    Google Scholar 

  • Miyake Y, Koizumi M (1948) The measurement of the viscosity coefficient of sea water. J Mar Res 7:63–66

    CAS  Google Scholar 

  • Nan YQ, He SQ, Liu MN, He HY, Hao LS (2013) The influence of inorganic salts on the rheological properties of 1, 3-propanediyl bis (dodecyl dimethylammonium bromide) and sodium dodecylsulfonate aqueous mixed system. Colloids Surf A Physicochem Eng Asp 436:158–169

    Article  CAS  Google Scholar 

  • Narayan GP, Lienhard JH (2014) Humidification-dehumidification desalination. In: Kucera J (ed) Desalination: water from water. Wiley Scrivener, Salem, pp 427–472

    Google Scholar 

  • National Research Council (2004) Review of the desalination and water purification technology roadmap. National Academies Press, Washington, DC

    Google Scholar 

  • Oda R, Panizza P, Schmutz M, Lequeux F (1997) Direct evidence of the shear-induced structure of wormlike micelles: Gemini surfactant 12-2-12. Langmuir 13:6407–6412

    Article  CAS  Google Scholar 

  • Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag reduction: physico-chemical properties and rheological behavior. Rheol Acta 25:468–486

    Article  CAS  Google Scholar 

  • Pollert J (1985) Today and future possibilities of industrial applications of drag reduction. In: Gampert B (ed) The influence of polymer additives on velocity and temperature fields. Springer, Berlin, pp 371–395

    Chapter  Google Scholar 

  • Ponizovskii AM, Melesko EP, Olobina NI (1953) Viscosity and specific heat of sea water and natural brines. Trudi Komi Filiala, Akad. Nauk. SSSR 4:75–80

  • Sellin RHJ, Hoyt JW, Poliert J, Scrivener O (1982) The effect of drag reducing additives on fluid flows and their industrial applications part 2: present applications and future proposals. J Hydraul Res 20:235–292

    Article  Google Scholar 

  • Semenov BN (1991) The pulseless injection of polymeric additives into near-wall flow and perspectives of drag reduction. In: Choi KS (ed) Recent developments in turbulence management. Springer Netherlands, Dordrecht, pp 293–308

    Chapter  Google Scholar 

  • Stanley EM, Batten RC (1969) Viscosity of sea water at moderate temperatures and pressures. J Geophys Res 74:3415–3420

    Article  CAS  Google Scholar 

  • Takeda M, Kusano T, Matsunaga T, Endo H, Shibayama M, Shikata T (2011) Rheo-SANS studies on shear-thickening/thinning in aqueous rodlike micellar solutions. Langmuir 27:1731–1738

    Article  CAS  Google Scholar 

  • Truong MT, Walker LM (2000) Controlling the shear-induced structural transition of rodlike micelles using nonionic polymer. Langmuir 16:7991–7998

    Article  CAS  Google Scholar 

  • Truong MT, Walker LM (2002) Quantifying the importance of micellar microstructure and electrostatic interactions on the shear-induced structural transition of cylindrical micelles. Langmuir 18:2024–2031

    Article  CAS  Google Scholar 

  • Usui H, Saeki T (1993) Drag reduction and heat transfer reduction by cationic surfactants. J Chem Eng Jpn 26:103–106

    Article  CAS  Google Scholar 

  • Vasserman AM, Motyakin MV, Yasina LL, Vasil’ev VG, Rogovina LZ (2011) Effect of salts on local mobility and rheological properties of micelles of new long-chain surfactant. Colloid J 73:453–457

    Article  CAS  Google Scholar 

  • Wang LS, Yu TT, Cao QF, Cao YB, Cao YH, Meng QY (2007) Interfacial viscoelasticity and performance properties of BS-12 foam for EOR. Oilfield Chem 24:70–74

    Google Scholar 

  • Wasekar VM, Manglik RM (1999) A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanc Heat Transf 6:135–150

    Article  Google Scholar 

  • Wei JJ, Kawaguchi Y, Li FC, Yu B, Zakin JL, Hart DJ, Zhang Y (2009) Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. Int J Heat Mass Transf 52:3547–3554

    Article  CAS  Google Scholar 

  • Wells CS (1969) An analysis of uniform injection of a drag-reducing fluid into a turbulent boundary layer. In: Wells CS (ed) Viscous drag reduction. Springer US, New York, pp 361–382

    Chapter  Google Scholar 

  • Wen DS, Wang BX (2002) Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int J Heat Mass Transf 45:1739–1747

    Article  CAS  Google Scholar 

  • Wu J (1969) Drag reduction in external flows of additive solutions. In: Wells CS (ed) Viscous drag reduction. Springer US, New York, pp 331–350

    Chapter  Google Scholar 

  • Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532–542

    Article  CAS  Google Scholar 

  • Xin X, Wang L, Shen J, Xu G, Li Y (2014) Rheological properties of hydrolyzed polyacrylamide/sodium oleate mixed system in the presence of different inorganic salts. J Pet Sci Eng 114:15–21

    Article  CAS  Google Scholar 

  • Zakin JL, Lu B, Bewersdorff HW (1998) Surfactant drag reduction. RevChemEng 14:253–320

    Article  CAS  Google Scholar 

  • Zakin JL, Ge W, Zhang Y (2007) Drag reduction by surfactant giant micelles. In: Kaler EW, Zana R (eds) Giant micelles: properties and applications, Surfactant Science Series, vol 140. Taylor and France, New York, pp 473–492

    Chapter  Google Scholar 

  • Zhang HX, Wang DZ, Chen HP (2009) Experimental study on the effects of shear induced structure in a drag-reducing surfactant solution flow. Arch Appl Mech 79:773–778

    Article  Google Scholar 

  • Zhao Y, Cheung P, Shen AQ (2014) Microfluidic flows of wormlike micellar solutions. Adv Colloid Interfac 211:34–46

    Article  CAS  Google Scholar 

  • Zheng ZY, Li FC, Li Q, Wang L, Cai WH, Li XB, Zhang HN (2016) State-of-the-art of R&D on seawater desalination technology. Chin Sci Bull 61:2344–2370

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 51276046, 51506037, 51576051) and the Fundamental Research Funds for Central Universities (grant number HEUCFJ160207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Chen Li or Xiao-Bin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, ZY., Li, FC., Wang, L. et al. Experimental study on rheological and thermophysical properties of seawater with surfactant additive—part I: rheological properties. Rheol Acta 57, 619–633 (2018). https://doi.org/10.1007/s00397-018-1102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1102-z

Keywords

Navigation