Skip to main content
Log in

Colloidal fibers as structurant for worm-like micellar solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We investigate the rheological properties of a simplified version of a liquid detergent composed of an aqueous solution of the linear alkylbenzene sulphonate (LAS) surfactant, in which a small amount of fibers made of hydrogenated castor oil (HCO) is dispersed. At the concentration typically used in detergents, LAS is in a worm-like micellar phase exhibiting a Maxwellian behavior. The presence of HCO fibers provides elastic properties, such that the system behaves as a simple Zener body, mechanically characterized by a parallel connection of a spring and a Maxwell element. Despite this apparent independence of the contributions of the fibers and the surfactant medium to the mechanical characteristics of the system, we find that the low frequency modulus increases with increasing LAS concentration. This indicates that LAS induces attractive interactions among the HCO fibers, resulting in the formation of a stress-bearing structure that withstands shear at HCO concentrations, where the HCO fibers in the absence of attractive interactions would not sufficiently overlap to provide stress-bearing properties to the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  2. Israelachvili JN, Mitchell DJ, Ninham BW (1975) Theory of self-assembly of hydrocarbon amphiphiles. J Chem Soc Faraday Trans 2 72:1525–1568

    Article  Google Scholar 

  3. Gaudino D, Pasquino R, Grizzuti N (2015) Adding salt to a surfactant solution: linear rheological response of the resulting morphologies. J Rheol 59:1363–1375

    Article  CAS  Google Scholar 

  4. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–1400

    Article  CAS  Google Scholar 

  5. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2014) Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 93:188102-1-188102-4

    Google Scholar 

  6. Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86:995–1036

    Article  CAS  Google Scholar 

  7. Ezzellt SA, McCormick CL (1992) Water-soluble copolymers. 39. Synthesis and solution properties of associative acrylamido copolymers with pyrenesulfonamide fluorescence labels. Macromolecules 25:1881–1886

    Article  Google Scholar 

  8. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    Article  PubMed  Google Scholar 

  9. Karlsona L, Joabssonb F, Thuressonb K (2000) Phase behavior and rheology in water and in model paint formulations thickened with HM-EHEC: influence of the chemical structure and the distribution of hydrophobic tails. Carbohydr Polym 41:25–35

    Article  Google Scholar 

  10. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  11. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim 14:633–662

    Google Scholar 

  12. Verwey EJW, Overbeek JTG (1947) Theory of stability of lyophobic colloids. J Phys Chem 51:631–636

    Article  CAS  Google Scholar 

  13. Langmuir I (1938) The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J Chem Phys 6:873–896

    Article  CAS  Google Scholar 

  14. De Meirleir N, Pellens L, Broeckx W, van Assche G, De Malsche W (2014) The rheological properties of hydrogenated castor oil crystals. Colloid Polym Sci 292:2539–2547

    Article  CAS  Google Scholar 

  15. Yang D, Hrymak AN (2013) Rheology of aqueous dispersions of hydrogenated castor oil. Appl Rheol 23:23622-1-23622-9

    Google Scholar 

  16. De Meirleir N, Broeckx W, Puyvelde PV, De Malsche W (2015) Surfactant assisted emulsion crystallization of hydrogenated castor oil. Cryst Growth Des 15:635–641

    Article  CAS  Google Scholar 

  17. Dreiss CA, Nwabunwanne E, Liua R, Brooks NJ (2009) Assembling and de-assembling micelles: competitive interactions of cyclodextrins and drugs with pluronics. Soft Matter 5:1888–1896

    Article  CAS  Google Scholar 

  18. Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2009) Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (dws) study. Langmuir 25:716–723

    Article  CAS  PubMed  Google Scholar 

  19. Lutz Bueno V, Pasquino R, Liebi M, Kohlbrecher J, Fischer P (2016) Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: influence of surfactant headgroup structure and its counterion. Langmuir 32:4239–4250

    Article  CAS  PubMed  Google Scholar 

  20. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  21. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  CAS  Google Scholar 

  22. Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452

    Article  CAS  PubMed  Google Scholar 

  23. Poon WCK (2002) The physics of a model colloid–polymer mixture. J Phys Condens Matter 14:R859–R880

    Article  CAS  Google Scholar 

  24. Schuldt C, Schnau ßJ, Händler T, Glaser M, Lorenz J, Golde T, Käs JA, Smith D (2016) Tuning synthetic semiflexible networks by bending stiffness. Phys Rev Lett 117:197801-1–197801-6

    Article  CAS  Google Scholar 

  25. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305

    Article  CAS  PubMed  Google Scholar 

  26. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  27. Tharmann R, Claessens MMAE, Bausch AR (2006) Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces. Biophys J 90:2622–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilkins GMH, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25:8951–8959

    Article  CAS  PubMed  Google Scholar 

  29. Kazem N, Majidi C, Maloney C (2015) Gelation and mechanical response of patchy rods. Soft Matter 11:7877–7887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P&G for the materials and for financial support to G.Z. and S.M..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Pasquino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchetta, G., Mirzaagha, S., Guida, V. et al. Colloidal fibers as structurant for worm-like micellar solutions. Colloid Polym Sci 296, 1379–1385 (2018). https://doi.org/10.1007/s00396-018-4357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4357-0

Keywords

Navigation