Skip to main content
Log in

Polyborane encapsulated liposomes prepared using pH gradient and reverse-phase evaporation for boron neutron capture therapy: biodistribution in tumor-bearing mice

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Various types of boron delivery for boron neutron capture therapy (BNCT) have been studied. To selectively destroy cancer cells, high accumulation and selective delivery of 10B into tumor tissue are required. In this study, we developed polyboranes from 1,2-dicarba-closo-dodecaborane as boron carriers, and they were encapsulated into liposomes using either the pH gradient or reverse phase evaporation. The encapsulation efficiency of the liposome prepared using the pH gradient was twice as high as that prepared using reverse-phase evaporation. These liposomes, with diameters of either 50 or 100 nm, were injected into the tail veins of tumor-bearing mice to evaluate their biodistribution at 4, 12, and 24 h post-administration. Boron concentration of the polyborane encapsulated liposomes prepared using the pH gradient achieved 110–150 μg/g of tumor tissue, and the liposomes prepared using the pH gradient were able to achieve an intratumoral 10B concentration of 20–30 μg/g without replacing 11B with 10B. Moreover, this liposome maintained a high 10B level in the tumor for at least 20 h. Average tumor/blood ratios of liposomes reached 5–15 at 4–24 h after injection. From these results, use of polyborane encapsulated liposomes prepared using the pH gradient for BNCT was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barth RF, Coderrea JA, Vicente MGH (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002. https://doi.org/10.1158/1078-0432.CCR-05-0035

    Article  CAS  PubMed  Google Scholar 

  2. Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207. https://doi.org/10.1016/j.jconrel.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  3. Vicente MGH, Wickramasinghe A, Nurco DJ, Wang HJH, Nawrocky MM, Makar M, Miura M (2003) Synthesis, toxicity and biodistribution of two 5,15-di[3,5-(nidocarboranylmethyl)phenyl]porphyrins in EMT-6 tumor bearing mice. Bioorganic Med Chem 11:3101–3108. https://doi.org/10.1016/S0968-0896(03)00240-2

    Article  CAS  Google Scholar 

  4. Thirumamagal BTS, Zhao XB, Bandyopadhyaya AK, Narayanasamy S, Johnsamuel J, Tiwari R, Golightly DW, Patel V, Jehning BT, Backer MV, Barth RF, Lee RJ, Backer JM, Tjarks W (2006) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Bioconjug Chem 17:1141–1150. https://doi.org/10.1021/bc060075d

    Article  CAS  PubMed  Google Scholar 

  5. Yanagië H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saefusa Y, Hasumi K, Eriguchi M, Kobayashi T, Ono K (1997) Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer 75:660–665

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shelly K, Feakes DA, Hawthorne MF, Schmidt PG, Krisch TA, Bauer WF (1992) Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci 89:9039–9043. https://doi.org/10.1073/pnas.89.19.9039

    Article  CAS  PubMed  Google Scholar 

  7. Hawthorne MF, Shelly K (1997) Liposomes as drug delivery vehicles for boron agents. J Neuro-Oncology 33:53–58. https://doi.org/10.1023/A:1005713113990.

    Article  CAS  Google Scholar 

  8. Lee JD, Ueno M, Miyajima Y, Nakamura H (2007) Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org Lett 9:323–326. https://doi.org/10.1021/ol062840+

    Article  CAS  PubMed  Google Scholar 

  9. Yang W, Barth RF, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, Goodman JH (1997) Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. J Neuro-Oncol 33:59–70. https://doi.org/10.1023/A:1005769214899

    Article  CAS  Google Scholar 

  10. Shirakawa M, Yamamto T, Nakai K, Aburai K, Kawatobi S, Tsurubuchi T, Yamamoto Y, Yokoyama Y, Okuno H, Matsumura A (2009) Synthesis and evaluation of a novel liposome containing BPA–peptide conjugate for BNCT. Appl Radiat Isot 67:S88–S90. https://doi.org/10.1016/j.apradiso.2009.03.101

    Article  CAS  PubMed  Google Scholar 

  11. Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20. https://doi.org/10.1021/bc0501350

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura H, Miyajima Y, Takei T, Kasaoka S, Maruyama K (2004) Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem Commun 1910–1991. doi: https://doi.org/10.1039/B406141A

  13. Sudimack JJ, Adams D, Rotaru J, Shukla S, Yan J, Sekido M, Barth RF, Tjarks W, Lee RJ (2002) Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy. Pharm Res 19:1502–1508. https://doi.org/10.1023/A:1020408716807

    Article  CAS  PubMed  Google Scholar 

  14. Feakes DA, Shelly K, Hawthorne MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci 92:1367–1370. https://doi.org/10.1073/pnas.92.5.1367

    Article  CAS  PubMed  Google Scholar 

  15. Takeuchi I, Tomoda K, Matsumoto K, Uchiro H, Makino K (2016) PEGylated liposomes prepared with polyborane instead of cholesterol for BNCT: characteristics and biodistribution evaluation. Colloid Polym Sci 294:1679–1685. https://doi.org/10.1007/s00396-016-3925-4

    Article  CAS  Google Scholar 

  16. Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA (2002) The medicinal chemistry of carboranes. Coord Chem Rev 232:173–230. https://doi.org/10.1016/S0010-8545(02)00087-5

    Article  CAS  Google Scholar 

  17. Bregadze VI (1992) Dicarba-closo-dodecaboranes C2Bl0H12 and their derivatives. Chem Rev 92:209–223. https://doi.org/10.1021/cr00010a002

    Article  CAS  Google Scholar 

  18. Coult R, Fox MA, Gill WR, Herbertson PL, Macbride JAH, Wade K (1993) C-arylation and C-heteroarylation of icosahedral carboranes via their copper(I) derivatives. J Organomet Chem 462:19–29. https://doi.org/10.1016/0022-328X(93)83337-U

    Article  CAS  Google Scholar 

  19. Zheng Z, Jiang W, Zinn AA, Knobler CB, Hawthorne MF (1995) Facile electrophilic iodination of icosahedral carboranes. Synthesis of carborane derivatives with boron-carbon bonds via the palladium-catalyzed reaction of diiodocarboranes with grignard reagents. Inorg Chem 34:2095–2100. https://doi.org/10.1021/ic00112a023

    Article  CAS  Google Scholar 

  20. Endo Y, Iijima T, Yamakoshi Y, Fukasawa H, Miyaura C, Inada M, Kubo A, Itai A (2001) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Chem Biol 8:341–355. https://doi.org/10.1021/bc060075d

    Article  CAS  PubMed  Google Scholar 

  21. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50:158–163. https://doi.org/10.1246/bcsj.50.158

    Article  CAS  Google Scholar 

  22. Heber EM, Kueffer PJ, Lee MW Jr, Hawthorne MF, Garabalino MA, Molinari AJ, Nigg DW, Bauer W, Hughes AM, Pozzi ECC, Trivillin VA, Schwint AE (2012) Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential. Radiat Environ Biophys 51:195–204. https://doi.org/10.1007/s00411-011-0399-0

  23. Takeuchi I, Ishizuka Y, Uchiro H, Makino K (2017) Detailed biodistribution of liposomes prepared with polyborane instead of cholesterol for BNCT: effects of PEGylation. Colloid Polym Sci, in press 295:1455–1461

    Article  CAS  Google Scholar 

  24. Nichols JW, Deamer DW (1976) Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim Biophys Acta 455:269–271. https://doi.org/10.1016/0005-2736(76)90169-3

    Article  CAS  PubMed  Google Scholar 

  25. Mayer LD, Bally MB, Cullis PR (1986) Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 857:123–126. https://doi.org/10.1016/0005-2736(86)90105-7

    Article  CAS  PubMed  Google Scholar 

  26. Harrigan PR, Wong KF, Redelmeier TE, Wheeler JJ, Cullis PR (1993) Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta 1149:329–338. https://doi.org/10.1016/0005-2736(93)90218-O

    Article  CAS  PubMed  Google Scholar 

  27. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R (2006) Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 1758:1633–1640. https://doi.org/10.1016/j.bbamem.2006.05.028

    Article  CAS  PubMed  Google Scholar 

  28. Szoka Jr F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci 75:4194–4198

    Article  CAS  PubMed  Google Scholar 

  29. Ueno M, Ban HS, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med Chem 18:3059–3065. https://doi.org/10.1016/j.bmc.2010.03.050

    Article  CAS  PubMed  Google Scholar 

  30. Pick U (1981) Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Archiv Biochem Biophys 212:186–194. https://doi.org/10.1016/0003-9861(81)90358-1

    Article  CAS  Google Scholar 

  31. Thomae AV, Koch T, Panse C, Wunderli-Allenspach H, Krämer SD (2007) Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing effects of cholesterol and charged lipids. Pharm Res 24:1457–1472. https://doi.org/10.1007/s11095-007-9263-y

    Article  CAS  PubMed  Google Scholar 

  32. Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, Shirakawa T, Kirihara M, Kasaoka S, Maruyama K, Kumada H, Sakurai Y, Masunaga SI, Ono K, Miyatake SI (2008) Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neuro-Oncol 87:287–294. https://doi.org/10.1007/s11060-008-9522-8

    Article  CAS  Google Scholar 

  33. Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60:423–433. https://doi.org/10.1083/jcb.60.2.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2010-2014 (Grant Number S1001019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiko Makino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, I., Kishi, N., Shiokawa, K. et al. Polyborane encapsulated liposomes prepared using pH gradient and reverse-phase evaporation for boron neutron capture therapy: biodistribution in tumor-bearing mice. Colloid Polym Sci 296, 1137–1144 (2018). https://doi.org/10.1007/s00396-018-4331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4331-x

Keywords

Navigation