Skip to main content
Log in

A modifier that enables the easy dispersion of alkyl-coated nanoparticles in an epoxy network

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) coated with alkyl chains cannot be dissolved in diglycidylether of bisphenol A (DGEBA), which is a typical monomer used in the synthesis of epoxy networks. We show that adding small amounts of the linear amphiphilic polymer obtained by reaction of DGEBA with dodecylamine, produced a stable dispersion of dodecanethiol-coated gold NPs in DGEBA. The anionic homopolymerization of this blend initiated by a tertiary amine led to a nanocomposite with a uniform dispersion of gold NPs. The selected crosslinking chemistry allowed covalent bonding of the modifier to the matrix, avoiding phase separation and enabling easy tuning of the thermal properties of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  2. Zhang H, Han J, Yang B (2010) Structural fabrication and functional modulation of nanoparticle–polymer composites. Adv Funct Mater 20:1533–1550

    Article  CAS  Google Scholar 

  3. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751

    Article  CAS  Google Scholar 

  4. Almeida L, Amorim T, Carneiro N, Souto AP, Esteves MF (2010) Polymer nanocomposites for multifunctional finishing of textiles—a review. Text Res J 80:1290–1306

    Article  Google Scholar 

  5. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  6. Minelli C, Lowe SB, Stevens MM (2010) Engineering nanocomposite materials for cancer therapy. Small 6:2336–2357

    Article  CAS  Google Scholar 

  7. Aime C, Coradin T (2012) Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. J Polym Sci Pol Phys 50:669–680

    Article  CAS  Google Scholar 

  8. Tess RW (1988) In: May CA (ed) Epoxy resins chemistry and technology. Marcel Dekker, New York

    Google Scholar 

  9. Pascault JP, Williams RJJ (2010) Epoxy polymers: new materials and innovations. Wiley-VCH Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  10. Pardiñas-Blanco I, Hoppe CE, Lopez-Quintela MA, Rivas J (2007) Control on the dispersion of gold nanoparticles in an epoxy network. J Non-Cryst Solids 353:826–828

    Article  Google Scholar 

  11. Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Rühm A, Lennox RB (2001) Polymer stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412

    Article  CAS  Google Scholar 

  12. dell’Erba IE, Hoppe CE, Williams RJJ (2010) Synthesis of silver nanoparticles coated with oh-functionalized organic groups: dispersion and covalent bonding in epoxy networks. Langmuir 26:2042–2049

    Article  Google Scholar 

  13. Hoppe CE, Galante MJ, Oyanguren PA, Williams RJJ (2005) Epoxies modified by palmitic acid: from hot melts adhesives to plasticized networks. Macromol Mater Eng 290:456–462

    Article  CAS  Google Scholar 

  14. Puig J, Hoppe CE, Fasce LA, Pérez CJ, Piñeiro-Redondo Y, Bañobre-López M, López-Quintela MA, Rivas J, Williams RJJ (2012) Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: magnetic hyperthermia and shape memory. J Phys Chem C 116:13421–13428

    Article  CAS  Google Scholar 

  15. Williams RJJ, Rozenberg BA, Pascault JP (1997) Reaction-induced phase separation in modified thermosetting polymers. Adv Polym Sci 128:95–156

    Article  CAS  Google Scholar 

  16. Rozenberg BA (1986) Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci 75:113–165

    Article  Google Scholar 

  17. Zucchi IA, Hoppe CE, Galante MJ, Williams RJJ, López-Quintela MA, Matějka L, Slouf M, Pleštil J (2008) Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers. Macromolecules 41:4895–4903

    Article  CAS  Google Scholar 

  18. Puig J, Zucchi IA, Hoppe CE, Pérez CJ, Galante MJ, Williams RJJ, Rodríguez-Abreu C (2009) Epoxy networks with physical crosslinks produced by tail-to-tail associations of alkyl chains. Macromolecules 42:9344–9350

    Article  CAS  Google Scholar 

  19. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system. Chem Commun 7:801–802

    Google Scholar 

  20. Poisson N, Lachenal G, Sautereau H (1996) Near- and mid-infrared spectroscopy studies of an epoxy reactive system. Vib Spectrosc 12:237–247

    Article  CAS  Google Scholar 

  21. Hussain I, Wang Z, Cooper AI, Brust M (2006) Formation of spherical nanostructures by the controlled aggregation of gold colloids. Langmuir 22:2938–2941

    Article  CAS  Google Scholar 

  22. Gómez ML, Hoppe CE, Zucchi IA, Williams RJJ, Giannotti MI, López-Quintela MA (2009) Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains. Langmuir 25:1210–1217

    Article  Google Scholar 

  23. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  CAS  Google Scholar 

  24. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712

    Article  CAS  Google Scholar 

  25. Jia X, Listak J, Witherspoon V, Kalu EE, Yang X, Bockstaller MR (2010) Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals. Langmuir 26:12190–12197

    Article  CAS  Google Scholar 

  26. Maye MM, Zheng W, Leibowitz FL, Ly NK, Zhong CJ (2000) Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulations. Langmuir 16:490–497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the following Argentine institutions is gratefully acknowledged: National Research Council (CONICET), University of Mar del Plata, and National Agency for the Promotion of Science and Technology (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina E. Hoppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puig, J., Zucchi, I.A., Hoppe, C.E. et al. A modifier that enables the easy dispersion of alkyl-coated nanoparticles in an epoxy network. Colloid Polym Sci 291, 1677–1682 (2013). https://doi.org/10.1007/s00396-013-2902-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2902-4

Keywords

Navigation