Skip to main content
Log in

Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We synthesized, thermo- and pH-sensitive gels and tested them as skin extenders. Our aim is the development of copolymer and composite hydrogels that, when implanted under the human skin, swell osmotically and thereby induce skin growth. In the course of the polymerization reaction, we produced copolymers with variable compositions, starting from different acrylic compounds [N-isopropyl-acrylamide (NIPAAm), acrylamide (AAm), and acrylic acid (AAc)]. The mechanical strength and the swelling stability of the gels are enhanced by the addition of fillers [Na-montmorillonite and Na-montmorillonites organophilized with alkylammonium ions (Cn-m.), n = 4, 12, 18]. With this method we synthesized composite hydrogels. We observed that in the case of composites synthesized with the addition of fillers, relatively low filler contents (1–5 wt.%) resulted in more extensive swelling and stronger gel structure. During the experiments, the monomer composition (0/100–100/0 mol% NIPAAm/AAm or AAc) and the cross-link density (50–1500 mol%) of the gels (M/C ratio) and, in the case of composites, the quality and quantity of fillers are varied. The filler content of composites varies between 1 and 25 wt.%. The extent of swelling and the viscoelastic properties can be manipulated through the ratios of these parameters. In the case of certain copolymer and composite gels, values of desorption enthalpy (ΔH m) corresponding to the actual water contents were also determined by thermoanalytical measurements (differential scanning calorimetry, DSC). Swelling values determined by gravimetry and enthalpies calculated from DSC measurements were found to be in good correlation. Even in the case of the relatively hydrophobic poly(NIPAAm)-based gels, an enthalpy value of 98.41 kJ/mol was obtained, which is twice the value measured in pure water (41.74 kJ/mol). Evaluation and comparison of the rheological and DSC results also allowed conclusions to be drawn concerning the types of interaction operating among the three components of the system, i.e., the polymer skeleton and the filler and water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffman AS (2002) Advan Drug Delivery Rev 43:3

    Article  Google Scholar 

  2. Khetani SR, Bhatia SN (2006) Biotechnology 17:1

    Google Scholar 

  3. Keshava Murthy PS, Murali Mohan Y, Sreeramulu J, Mohana Raju K (2006) React Funct Polym 63:11

    Google Scholar 

  4. Benoit DSV, Nuttelman CR, Collins SD, Anseth KS (2006) Biomaterials 27:6102

    Article  CAS  Google Scholar 

  5. Hervas Perez JP, Lopez-Cabarcos E, Lopez-Ruiz B (2006) Biomol Eng 23:233

    Article  Google Scholar 

  6. Bussow K, Konthur Z, Lueking A, Lehrach H, Walter G (2001) Am J Pharmacogenomics 1:37

    Article  CAS  Google Scholar 

  7. Kioussis DR, Kofinas P (2005) Polymer 46:9342

    Article  CAS  Google Scholar 

  8. Liu P, Peng J, Li J, Wu J (2005) Rad Phys and Chem 72:635

    Article  CAS  Google Scholar 

  9. Nerapusri V, Keddie JL, Vincent B, Bushnak IA (2006) Langmuir 22:5036

    Article  CAS  Google Scholar 

  10. Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073

    Article  CAS  Google Scholar 

  11. Crowther HM, Vincent B (1998) Colloid Polym Sci 276:46

    Article  CAS  Google Scholar 

  12. Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K (2004) Macromolecules 37:9606

    Article  CAS  Google Scholar 

  13. Shibayama M, Karino T, Miyazaki S, Okabe S, Takehisa T, Haraguchi K (2005) Macromolecules 38:10772

    Article  CAS  Google Scholar 

  14. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E (2005) Macromolecules 38:3482

    Article  CAS  Google Scholar 

  15. Haraguchi K, Li HJ (2006) Macromolecules 39:1898

    Article  CAS  Google Scholar 

  16. Miyazaki S, Karino T, Endo H, Haraguchi K, Shibayama M (2006) Macromolecules 39:8112

    Article  CAS  Google Scholar 

  17. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Macromolecules 40:4287

    Article  CAS  Google Scholar 

  18. Haraguchi K, Li HJ, Okumura N (2007) Macromolecules 40:2299

    Article  CAS  Google Scholar 

  19. Jiang H, Su W, Mather PT, Bunning TJ (1999) Polymer 40:4593

    Article  CAS  Google Scholar 

  20. Jones DS, Lorimer CJ, Andrews GP, McCoy CP, Gorman SP (2007) Chem Eng Sci 62:990

    Article  CAS  Google Scholar 

  21. Cauich-Rodriguez JV, Deb S, Smith R (1996) Biomaterials 17:2259

    Article  CAS  Google Scholar 

  22. Masci G, Bontempo D, Crescenzi V (2002) Polymer 43:5587

    Article  CAS  Google Scholar 

  23. Fernández E, López D, López-Cabarcos E, Mijangos C (2005) Polymer 46:2211

    Article  Google Scholar 

  24. Nandi S, Henning Winter H, Fritz HG (2004) Polymer 45:4819

    Article  CAS  Google Scholar 

  25. Ricci EJ, Bentley MVLB, Farah M, Bretas RES, Marchettia JM (2002) Eur J Pharm Sci 17:161

    Article  CAS  Google Scholar 

  26. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF (2006) Int J Pharm 307:129

    Article  CAS  Google Scholar 

  27. Gelfer M, Horst RH, Henning Winter H, Heintz AM, Hsu SL (2003) Polymer 44:2363

    Article  CAS  Google Scholar 

  28. Yu Y, Xu Y, Ning H, Zhang S (2008) Colloid Polym Sci 286:1165

    Article  CAS  Google Scholar 

  29. Bako J, Szepesi M, Veres AJ, Cserhati Cs, Borbely ZsM, Hegedus CS, Borbely J (2008) Colloid Polym Sci 286:357

    Article  CAS  Google Scholar 

  30. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Biomaterials 17:1647

    Article  CAS  Google Scholar 

  31. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  32. Sinha Ray S, Bousmina M (2005) Prog Mater Sci 50:962

    Article  Google Scholar 

  33. Ma J, Xu Y, Zhang O, Zha L, Liang B (2007) Colloid Polym Sci 285:479

    Article  CAS  Google Scholar 

  34. Xia X, Yih J, D’Souza NA, Hu Z (2003) Polymer 44:3389

    Article  CAS  Google Scholar 

  35. Churochkina NA, Starodoubtsev SG, Khokhlov AR (1998) Polym Gels Netw 6:205

    Article  CAS  Google Scholar 

  36. Strachotová B, Strachota A, Uchman M, Šlouf M, Brus J, Pleštil J (2007) Polymer 48:1471

    Article  Google Scholar 

  37. Yeh JM, Liou SJ, Chang YW (2004) J Appl Polym Sci 91:3489

    Article  CAS  Google Scholar 

  38. Xiang Y, Peng Z, Chen D (2006) Eur Polym J 42:2125

    Article  CAS  Google Scholar 

  39. Meyvis TKL, Stubbe BG, Van Steenbergen MJ (2002) Int J Pharm 244:163

    Article  CAS  Google Scholar 

  40. Metzger TG (2002) The rheology handbook. Vincentz Verlag, Hannover

    Google Scholar 

  41. Zaman MA, Martin GP, Rees GD, Royall PG (2004) Thermochim Acta 417:251

    Article  CAS  Google Scholar 

  42. Zhang XZ, Chu CC (2005) Polymer 46:9664

    Article  CAS  Google Scholar 

  43. Mohan YM, Murthy PSK, Sreedhar B, Raju KM (2006) J Appl Polym Sci 102:1

    Article  CAS  Google Scholar 

  44. Agrawal AM, Manek RV, Kolling WM, Neau ST (2003) Pharm Sci Tech 4:1

    Google Scholar 

  45. Szilágyi A, Zrínyi M (2005) Polymer 46:10011

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian National Office of Research and Technology (NKTH) and the Agency for Research Fund Management and Research Exploitation (KPI) under contract no. RET-07/2005 and the Cooperation Research Centre (DEAK) of the University of Szeged (28/00/0R201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Dékány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janovák, L., Varga, J., Kemény, L. et al. Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels. Colloid Polym Sci 286, 1575–1585 (2008). https://doi.org/10.1007/s00396-008-1933-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1933-8

Keywords

Navigation