Skip to main content

Advertisement

Log in

Prospective associations between dietary patterns and high sensitivity C-reactive protein in European children: the IDEFICS study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This prospective study explores high sensitivity C-reactive protein (hs-CRP) levels in relation to dietary patterns at two time points in European children.

Methods

Out of the baseline sample of the IDEFICS study (n = 16,228), 4020 children, aged 2–9 years at baseline, with available hs-CRP levels and valid data from a food frequency questionnaire (FFQ) at baseline (T0) and 2 years later (T1) were included. K-means clustering algorithm based on the similarities between relative food consumption frequencies of the FFQ was applied. hs-CRP was dichotomized according to sex-specific cutoff points. Multilevel logistic regression was performed to assess the relationship between dietary patterns and hs-CRP adjusting for covariates.

Results

Three consistent dietary patterns were found at T0 and T1: ‘animal protein and refined carbohydrate’, ‘sweet and processed’ and ‘healthy’. Children allocated to the ‘protein’ and ‘sweet and processed’ clusters at both time points had significantly higher odds of being in the highest category of hs-CRP (OR 1.47; 95% CI 1.03–2.09 for ‘animal protein and refined carbohydrate’ and OR 1.44; 95% CI 1.08–1.92 for ‘sweet and processed’) compared to the ‘healthy’ cluster. The odds remained significantly higher for the ‘sweet and processed’ pattern (OR 1.39; 95% CI 1.05–1.84) when covariates were included.

Conclusions

A dietary pattern characterized by frequent consumption of sugar and processed products and infrequent consumption of vegetables and fruits over time was independently related with inflammation in European children. Efforts to improve the quality of the diet in childhood may prevent future diseases related with chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. doi:10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  2. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126. doi:10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  3. Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, Loffler D, Buhligen U, Wojan M, Till H, Kratzsch J, Kiess W, Bluher M, Korner A (2015) Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes 64(4):1249–1261. doi:10.2337/db14-0744

    Article  CAS  PubMed  Google Scholar 

  4. Murdolo G, Smith U (2006) The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr Metab Cardiovasc Dis 16(Suppl 1):S35–S38. doi:10.1016/j.numecd.2005.10.016

    Article  PubMed  Google Scholar 

  5. Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Morris JE, Miller GJ, Strachan DP (2000) C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis 149(1):139–150 pii]

    Article  CAS  PubMed  Google Scholar 

  6. Ford ES (2003) C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the National Health and Nutrition Examination Survey 1999–2000. Circulation 108(9):1053–1058. doi:10.1161/01.CIR.0000080913.81393.B8

    Article  CAS  PubMed  Google Scholar 

  7. Dowd JB, Zajacova A, Aiello AE (2010) Predictors of inflammation in US children aged 3–16 years. Am J Prev Med 39(4):314–320. doi:10.1016/j.amepre.2010.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jonsson LS, Kolb H, Lansink M, Marcos A, Margioris A, Matusheski N, Nordmann H, O’Brien J, Pugliese G, Rizkalla S, Schalkwijk C, Tuomilehto J, Warnberg J, Watzl B, Winklhofer-Roob BM (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106(Suppl 3):S5–S78. doi:10.1017/S0007114511005460

    Article  CAS  PubMed  Google Scholar 

  9. Galland L (2010) Diet and inflammation. Nutr Clin Pract 25(6):634–640. doi:10.1177/0884533610385703

    Article  PubMed  Google Scholar 

  10. Barbaresko J, Koch M, Schulze MB, Nothlings U (2013) Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev 71(8):511–527. doi:10.1111/nure.12035

    Article  PubMed  Google Scholar 

  11. Gonzalez-Gil EM, Santabarbara J, Siani A, Ahrens W, Sioen I, Eiben G, Gunther K, Iacoviello L, Molnar D, Rise P, Russo P, Tornaritis M, Veidebaum T, Galli C, Moreno LA (2016) Whole-blood fatty acids and inflammation in European children: the IDEFICS Study. Eur J Clin Nutr 70(7):819–823. doi:10.1038/ejcn.2015.219

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez-Gil EM, Santabarbara J, Russo P, Ahrens W, Claessens M, Lissner L, Bornhorst C, Krogh V, Iacoviello L, Molnar D, Siani A, Tornaritis M, Veidebaum T, Moreno LA (2015) Food intake and inflammation in European children: the IDEFICS study. Eur J Nutr. doi:10.1007/s00394-015-1054-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1):3–9

    Article  CAS  PubMed  Google Scholar 

  14. Wirfalt E, Drake I, Wallstrom P (2013) What do review papers conclude about food and dietary patterns? Food Nutr Res. doi:10.3402/fnr.v57i0.20523

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee Y, Kang D, Lee SA (2014) Effect of dietary patterns on serum C-reactive protein level. Nutr Metab Cardiovasc Dis 24(9):1004–1011. doi:10.1016/j.numecd.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  16. Smidowicz A, Regula J (2015) Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv Nutr 6(6):738–747. doi:10.3945/an.115.009415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao Y, Wittert G, Taylor AW, Adams R, Appleton S, Shi Z (2016) Nutrient patterns and chronic inflammation in a cohort of community dwelling middle-aged men. Clin Nutr. doi:10.1016/j.clnu.2016.06.018

    Article  PubMed  Google Scholar 

  18. Defago MD, Elorriaga N, Irazola VE, Rubinstein AL (2014) Influence of food patterns on endothelial biomarkers: a systematic review. J Clin Hypertens (Greenwich) 16(12):907–913. doi:10.1111/jch.12431

    Article  CAS  Google Scholar 

  19. Stricker MD, Onland-Moret NC, Boer JM, van der Schouw YT, Verschuren WM, May AM, Peeters PH, Beulens JW (2013) Dietary patterns derived from principal component- and k-means cluster analysis: long-term association with coronary heart disease and stroke. Nutr Metab Cardiovasc Dis 23(3):250–256. doi:10.1016/j.numecd.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  20. Wirfalt AK, Jeffery RW (1997) Using cluster analysis to examine dietary patterns: nutrient intakes, gender, and weight status differ across food pattern clusters. J Am Diet Assoc 97(3):272–279

    Article  CAS  PubMed  Google Scholar 

  21. Brunner EJ, Mosdol A, Witte DR, Martikainen P, Stafford M, Shipley MJ, Marmot MG (2008) Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. Am J Clin Nutr 87(5):1414–1421 pii]

    Article  CAS  PubMed  Google Scholar 

  22. Ahrens W, Bammann K, Siani A, Buchecker K, De Henauw S, Iacoviello L, Hebestreit A, Krogh V, Lissner L, Marild S, Molnar D, Moreno LA, Pitsiladis YP, Reisch L, Tornaritis M, Veidebaum T, Pigeot I, Consortium I (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond) 35(Suppl 1):S3–15. doi:10.1038/ijo.2011.30

    Article  Google Scholar 

  23. Huybrechts I, Bornhorst C, Pala V, Moreno LA, Barba G, Lissner L, Fraterman A, Veidebaum T, Hebestreit A, Sieri S, Ottevaere C, Tornaritis M, Molnar D, Ahrens W, De Henauw S, Consortium I (2011) Evaluation of the Children’s Eating Habits Questionnaire used in the IDEFICS study by relating urinary calcium and potassium to milk consumption frequencies among European children. Int J Obes (Lond) 35(Suppl 1):S69–78. doi:10.1038/ijo.2011.37

    Article  CAS  Google Scholar 

  24. Lanfer A, Hebestreit A, Ahrens W, Krogh V, Sieri S, Lissner L, Eiben G, Siani A, Huybrechts I, Loit HM, Papoutsou S, Kovacs E, Pala V, Consortium I (2011) Reproducibility of food consumption frequencies derived from the Children’s Eating Habits Questionnaire used in the IDEFICS study. Int J Obes (Lond) 35(Suppl 1):S61–68. doi:10.1038/ijo.2011.36

    Article  Google Scholar 

  25. Peplies J, Fraterman A, Scott R, Russo P, Bammann K (2010) Quality management for the collection of biological samples in multicentre studies. Eur J Epidemiol 25(9):607–617. doi:10.1007/s10654-010-9481-1

    Article  CAS  PubMed  Google Scholar 

  26. UNESCO (2007) United Nations Educational Scientific and Cultural Organization. International Standard Classification of Education (ISCED). http://www.uis.unesco.org/Library/Documents/isced97-en.pdf. Accessed 15 March 2017

  27. Newby PK, Tucker KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62(5):177–203

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez-Alvira JM, Bornhorst C, Bammann K, Gwozdz W, Krogh V, Hebestreit A, Barba G, Reisch L, Eiben G, Iglesia I, Veidebaum T, Kourides YA, Kovacs E, Huybrechts I, Pigeot I, Moreno LA (2015) Prospective associations between socio-economic status and dietary patterns in European children: the Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants (IDEFICS) Study. Br J Nutr 113(3):517–525. doi:10.1017/S0007114514003663

    Article  CAS  PubMed  Google Scholar 

  29. Everitt B, Landau S, Leese M et al (2011) Cluster analysis, 5th edn. Wiley, London

    Book  Google Scholar 

  30. Pala V, Lissner L, Hebestreit A, Lanfer A, Sieri S, Siani A, Huybrechts I, Kambek L, Molnar D, Tornaritis M, Moreno L, Ahrens W, Krogh V (2013) Dietary patterns and longitudinal change in body mass in European children: a follow-up study on the IDEFICS multicenter cohort. Eur J Clin Nutr 67(10):1042–1049. doi:10.1038/ejcn.2013.145

    Article  CAS  PubMed  Google Scholar 

  31. Reedy J, Wirfalt E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, Midthune D, Leitzmann M, Hollenbeck A, Schatzkin A, Subar AF (2010) Comparing 3 dietary pattern methods–cluster analysis, factor analysis, and index analysis—with colorectal cancer risk: the NIH-AARP Diet and Health Study. Am J Epidemiol 171(4):479–487. doi:10.1093/aje/kwp393

    Article  PubMed  Google Scholar 

  32. Crozier SR, Robinson SM, Borland SE, Inskip HM, Group SWSS (2006) Dietary patterns in the Southampton Women’s Survey. Eur J Clin Nutr 60(12):1391–1399. doi:10.1038/sj.ejcn.1602469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith AD, Emmett PM, Newby PK, Northstone K (2011) A comparison of dietary patterns derived by cluster and principal components analysis in a UK cohort of children. Eur J Clin Nutr 65(10):1102–1109. doi:10.1038/ejcn.2011.96

    Article  CAS  PubMed  Google Scholar 

  34. Nettleton JA, Steffen LM, Mayer-Davis EJ, Jenny NS, Jiang R, Herrington DM, Jacobs DR Jr (2006) Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 83(6):1369–1379 pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Garcia E, Schulze MB, Fung TT, Meigs JB, Rifai N, Manson JE, Hu FB (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80(4):1029–1035

    Article  CAS  PubMed  Google Scholar 

  36. Oude Griep LM, Wang H, Chan Q (2013) Empirically-derived dietary patterns, diet quality scores, and markers of inflammation and endothelial dysfunction. Curr Nutr Rep 2(2):97–104. doi:10.1007/s13668-013-0045-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Centritto F, Iacoviello L, di Giuseppe R, De Curtis A, Costanzo S, Zito F, Grioni S, Sieri S, Donati MB, de Gaetano G, Di Castelnuovo A, Moli-sani I (2009) Dietary patterns, cardiovascular risk factors and C-reactive protein in a healthy Italian population. Nutr Metab Cardiovasc Dis 19 (10):697–706. doi:10.1016/j.numecd.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  38. Bullo M, Casas-Agustench P, Amigo-Correig P, Aranceta J, Salas-Salvado J (2007) Inflammation, obesity and comorbidities: the role of diet. Public Health Nutr 10(10A):1164–1172. doi:10.1017/S1368980007000663

    Article  Google Scholar 

  39. Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J (2008) High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 87(5):1188–1193 pii]

    CAS  PubMed  Google Scholar 

  40. Collaboration CRPCHDG, Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E et al (2011) Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342:d548

    Article  Google Scholar 

Download references

Acknowledgements

This work was done as part of the IDEFICS Study and was published on behalf of its European Consortium (http://www.idefics.eu). The information in this document reflects the author’s view and is provided as is. We gratefully acknowledge the financial support of the European Community within the Sixth RTD Framework Programme Contract No. 016181 (FOOD).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Esther María González-Gil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. M. Fernández-Alvira and L. A. M. Aznar equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

394_2017_1419_MOESM1_ESM.png

Supplementary figure 1. Z-Scores of relative consumption frequencies in the ‘healthy’ pattern in baseline (T0). Highest mean values per food item in comparison with the other two patterns. (PNG 199 KB)

394_2017_1419_MOESM2_ESM.png

Supplementary figure 2. Z-Scores of relative consumption frequencies in the ‘healthy’ pattern in baseline (T0). Lowest mean values per food item in comparison with the other two patterns. (PNG 208 KB)

394_2017_1419_MOESM3_ESM.png

Supplementary figure 3. Z-Scores of relative consumption frequencies in the ‘healthy’ pattern in follow-up (T1). Highest mean values per food item in comparison with the other two patterns. (PNG 171 KB)

394_2017_1419_MOESM4_ESM.png

Supplementary figure 4. Z-Scores of relative consumption frequencies in the ‘healthy’ pattern in follow-up (T1). Lowest mean values per food item in comparison with the other two patterns. (PNG 186 KB)

394_2017_1419_MOESM5_ESM.png

Supplementary figure 5. Z-Scores of relative consumption frequencies in the ‘animal protein and refined carbohydrate’ pattern in baseline (T0). Highest mean values per food item in comparison with the other two patterns. (PNG 196 KB)

394_2017_1419_MOESM6_ESM.png

Supplementary figure 6. Z-Scores of relative consumption frequencies in the ‘animal protein and refined carbohydrate’ pattern in baseline (T0). Lowest mean values per food item in comparison with the other two patterns. (PNG 177 KB)

394_2017_1419_MOESM7_ESM.png

Supplementary figure 7. Z-Scores of relative consumption frequencies in the ‘animal protein and refined carbohydrate’ pattern in follow-up (T1). Highest mean values per food item in comparison with the other two patterns. (PNG 204 KB)

394_2017_1419_MOESM8_ESM.png

Supplementary figure 8. Z-Scores of relative consumption frequencies in the ‘animal protein and refined carbohydrate’ pattern in follow-up (T1). Lowest mean values per food item in comparison with the other two patterns. (PNG 181 KB)

394_2017_1419_MOESM9_ESM.png

Supplementary figure 9. Z-Scores of relative consumption frequencies in the ‘sweet and processed’ pattern in baseline (T0). Highest mean values per food item in comparison with the other two patterns. (PNG 226 KB)

394_2017_1419_MOESM10_ESM.png

Supplementary figure 10. Z-Scores of relative consumption frequencies in the ‘sweet and processed’ pattern in baseline (T0). Lowest mean values per food item in comparison with the other two patterns. (PNG 173 KB)

394_2017_1419_MOESM11_ESM.png

Supplementary figure 11. Z-Scores of relative consumption frequencies in the ‘sweet and processed’ pattern in follow-up (T1). Highest mean values per food item in comparison with the other two patterns. (PNG 243 KB)

394_2017_1419_MOESM12_ESM.png

Supplementary figure 12. Z-Scores of relative consumption frequencies in the ‘sweet and processed’ pattern in follow-up (T1). Lowest mean values per food item in comparison with the other two patterns. (PNG 179 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Gil, E.M., Tognon, G., Lissner, L. et al. Prospective associations between dietary patterns and high sensitivity C-reactive protein in European children: the IDEFICS study. Eur J Nutr 57, 1397–1407 (2018). https://doi.org/10.1007/s00394-017-1419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1419-x

Keywords

Navigation