Skip to main content

Advertisement

Log in

The representation of tropical upper tropospheric water in EC Earth V2

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Tropical upper tropospheric humidity, clouds, and ice water content, as well as outgoing longwave radiation (OLR), are evaluated in the climate model EC Earth with the aid of satellite retrievals. The Atmospheric Infrared Sounder and Microwave Limb Sounder together provide good coverage of relative humidity. EC Earth’s relative humidity is in fair agreement with these observations. CloudSat and CALIPSO data are combined to provide cloud fractions estimates throughout the altitude region considered (500–100 hPa). EC Earth is found to overestimate the degree of cloud cover above 200 hPa and underestimate it below. Precipitating and non-precipitating EC Earth ice definitions are combined to form a complete ice water content. EC Earth’s ice water content is below the uncertainty range of CloudSat above 250 hPa, but can be twice as high as CloudSat’s estimate in the melting layer. CERES data show that the model underestimates the impact of clouds on OLR, on average with about 9 W m−2. Regionally, EC Earth’s outgoing longwave radiation can be ∼20 W m−2 higher than the observation. A comparison to ERA-Interim provides further perspectives on the model’s performance. Limitations of the satellite observations are emphasised and their uncertainties are, throughout, considered in the analysis. Evaluating multiple model variables in parallel is a more ambitious approach than is customary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Austin RT, Heymsfield AJ, Stephens GL (2009) Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J Geophys Res 114(D8):D00A23. doi:10.1029/2008JD010049

  • Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134(634): 1337–1351. doi:10.1002/qj.289

    Article  Google Scholar 

  • Buehler SA, von Engeln A, Brocard E, John VO, Kuhn T, Eriksson P (2006) Recent developments in the line-by-line modeling of outgoing longwave radiation. J Quant Spectrosc Radiat Transf 98(3): 446–457. doi:10.1016/j.jqsrt.2005.11.001

    Article  Google Scholar 

  • Chen WT, Woods CP, Li JLF, Waliser DE, Chern JD, Tao WK, Jiang JH, Tompkins AM (2011) Partitioning cloudsat ice water content for comparison with upper-tropospheric ice in global atmospheric models. J Geophys Res. doi:10.1029/2010JD015179

  • Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne J, Sèze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35(15):L15,704. doi: 10.1029/2008GL034207

  • Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM oriented calipso cloud product CALIPSO-GOCCP. J Geophys Res 115:D00H16. doi: 10.1029/2009JD012251

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Delanoë J, Hogan RJ (2010) Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J Geophys Res 115(D00H29):2064–2078. doi:10.1029/2009JD012346

    Google Scholar 

  • Ebert EE, Curry JA (1992) A parameterization of ice cloud optical properties for climate models. J Geophys Res 97(D4):3831–3836. doi:10.1029/91JD02472

    Article  Google Scholar 

  • Ekström M, Eriksson P, Read WG, Milz M, Murtagh DP (2008) Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere. Atmos Chem Phys 8(2):309–320. doi:10.5194/acp-8-309-2008

    Article  Google Scholar 

  • Eliasson S, Buehler SA, Milz M, Eriksson P, John VO (2011) Assessing observed and modelled spatial distributions of ice water path using satellite data. Atmos Chem Phys 11(1):375–391. doi:10.5194/acp-11-375-2011

    Article  Google Scholar 

  • Eriksson P, Ekström M, Rydberg B, Wu DL, Austin RT, Murtagh DP (2008) Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere. Atmos Chem Phys 8(7):1937–1948. doi: 10.5194/acp-8-1937-2008

    Article  Google Scholar 

  • Eriksson P, Rydberg B, Johnston M, Murtagh DP, Struthers H, Ferrachat S, Lohmann U (2010) Diurnal variations of humidity and ice water content in the tropical upper troposphere. Atmos Chem Phys 10:11519–11533. doi:10.5194/acp-10-11519-2010

    Google Scholar 

  • Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34(4):L04,701. doi:10.1029/2006GL028083

  • Folkins I, Kelly KK, Weinstock EM (2002) A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics. J Geophys Res 107(D23):4736. doi:10.1029/2002JD002185

    Article  Google Scholar 

  • Geleyn J, Hollingsworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atm 52:1–16

    Google Scholar 

  • Gettelman A, Collins WD, Fetzer EJ, Eldering A, Irion FW, Duffy PB, Bala G (2006) Climatology of upper-tropospheric relative humidity from the Atmospheric Infrared Sounder and implications for climate. J Clim 19(23):6104–6121. doi:10.1175/JCLI3956.1

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Stefãnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R et al (2010) EC-Earth: a seamless earth system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi: 10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Stefãnescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2011) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 1–19. doi:10.1007/s00382-011-1228-5

  • Heymsfield AJ, Iaquinta J (2000) Cirrus crystal terminal velocities. J Atmos Sci 57(7):916–938. doi:10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2

    Article  Google Scholar 

  • Heymsfield AJ, Matrosov S, Baum B (2003) Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers. J Appl Meteorol 42(10):1369–1390. doi:10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2

    Article  Google Scholar 

  • Kärcher B, Lohmann U (2002) A parameterization of cirrus cloud formation: homogeneous freezing including effects of aerosol size. J Geophys Res 107(D23):4698. doi:10.1029/2001JD001429

    Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteorol Monogr 10(32)

  • Liang C, Eldering A, Gettelman A, Tian B, Wong S, Fetzer E, Liou K (2011) Record of tropical interannual variability of temperature and water vapor from a combined AIRS-MLS data set. J Geophys Res 116:D06,103. doi:10.1029/2010JD014841

  • Liu JY, Orville HD (1969) Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J Atmos Sci 26(6):1283–1298. doi:10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2

    Article  Google Scholar 

  • Liu C, Zipser EJ (2009) Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause. J Geophys Res 114:D09303. doi:10.1029/2008JD011524

  • Liu C, Zipser EJ, Mace GG, Benson S (2008) Implications of the differences between daytime and nighttime CloudSat observations over the Tropics. J Geophys Res 113:D00A04. doi:10.1029/2008JD009783

  • Loeb NG, Kato S (2002) Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth’s Radiant Energy System CERES satellite instrument. J Clim 15(12):1474–1484. doi:10.1175/1520-0442(2002)015<1474:TOADRE>2.0.CO;2

    Article  Google Scholar 

  • Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. doi:10.1175/2008JCLI2637.1

    Article  Google Scholar 

  • Maddy ES, Barnet CD (2008) Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans Geosci Remote Sensing 46(8):2375–2384. doi:10.1109/TGRS.2008.917498

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97JD00237

    Google Scholar 

  • Murphy DM, Koop T (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q J R Meteorol Soc 131(608):1539–1565. doi:10.1256/qj.04.94

    Article  Google Scholar 

  • Nazaryan H, McCormick MP, Menzel WP (2008) Global characterization of cirrus clouds using CALIPSO data. J Geophys Res 113(D16):D16,211. doi:10.1029/2007JD009481

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2009) Toward seamless prediction: calibration of climate change projections using seasonal forecasts reply. Bull Am Meteorol Soc 90(10):1551–1554. doi:10.1175/2009BAMS2916.1

    Article  Google Scholar 

  • Protat A, Delanoë J, O’Connor EJ, L’Ecuyer TS (2010) The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J Atmos Ocean Technol 27(5):793–810. doi:10.1175/2009JTECHA1397.1

    Article  Google Scholar 

  • Räisänen P (1998) Effective longwave cloud fraction and maximum-random overlap of clouds: a problem and a solution. MWR 126(12):3336–3340. doi:10.1175/1520-0493(1998)126<3336:ELCFAM>2.0.CO;2

    Article  Google Scholar 

  • Read WG, Lambert A, Bacmeister J, Cofield RE, Christensen LE, Cuddy DT, Daffer WH, Drouin BJ, Fetzer E, Froidevaux L, Fuller R, Herman R, Jarnot RF, Jiang JH, Jiang YB, Kelly K, Knosp BW, Kovalenko LJ, Livesey NJ, Liu HC, Manney GL, Pickett HM, Pumphrey HC, Rosenlof KH, Sabounchi X, Santee ML, Schwartz MJ, Snyder WV, Stek PC, Su H, Takacs LL, Thurstans RP, Vömel H, Wagner PA, Waters JW, Webster CR, Weinstock EM, Wu DL (2007) Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J Geophys Res 112:D24S35. doi:10.1029/2007JD008752

    Article  Google Scholar 

  • Rossow WB, Garder L (1984) Selection of map grid for data analysis and archival. J Clim Appl Meteorol 23(8):1253–1257. doi:10.1175/1520-0450(1984)023<1253:SOAMGF>2.0.CO;2

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72(1):2–20. doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

    Article  Google Scholar 

  • Soden BJ (2000) The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys Res Lett 27(15):2173–2176. doi:10.1029/2000GL011436

    Article  Google Scholar 

  • Sohn BJ, Nakajima T, Satoh M, Jang HS (2010) Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: Nicam simulation results. Atmos Chem Phys 10(23):11641–11646. doi:10.5194/acp-10-11641-2010

    Google Scholar 

  • Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O’connor EJ, Rossow WB, Durden SL et al (2002) The CloudSat Science Team, 2002: the CloudSat mission and the A-train. Bull Am Meteorol Soc 83(12):1771–1790. doi: 10.1175/BAMS-83-12-1771

    Article  Google Scholar 

  • Sun W, Videen G, Kato S, Lin B, Lukashin C, Hu Y (2011) A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J Geophys Res 116:D22207. doi:10.1029/2011JD016422

  • Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J Geophys Res 109:D10101. doi:10.1029/2003JD004117

  • Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121(11):3040–3061. doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2

    Article  Google Scholar 

  • Tompkins AM, Gierens K, Rädel G (2007) Ice supersaturation in the ECMWF integrated forecast system. Q J R Meteorol Soc 133:53–63. doi:10.1002/qj.14

    Article  Google Scholar 

  • Waliser DE, Li JLF, Woods CP, Austin RT, Bacmeister J, Chern J, Genio AD, Jiang JH, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao WK, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res 114:D00A21. doi:10.1029/2008JD010015

    Article  Google Scholar 

  • Waliser DE, Li JLF, L’Ecuyer TS, Chen WT (2011) The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys Res Lett 38:L06802. doi:10.1029/2010GL046478

  • Wang PH, Minnis P, McCormick MP, Kent GS, Skeens KM (1996) A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J Geophys Res 101(D23):29407–29429. doi:10.1029/96JD01780

    Google Scholar 

  • Waters JW, Froidevaux L, Harwood RS, Jarnot RF, Pickett HM, Read W, Siegel PH, Cofield RE, Filipiak MJ, Flower DA, Holden JR, Lau GK, Livesey NJ, Manney GL, Pumphrey HC, Santee ML, Wu WL, Cuddy DT, Lay RR, Loo MS, Perun VS, Schwartz MJ, Stek P, Thurstans RP, Boyles MA, Chandra KM, Chavez MC, Chen GS, Chudasama BV, Dodge R, Fuller RA, Girard MA, Jiang JH, Jiang YB, Knosp BW, LaBelle R, Lam JC, Lee KA, Miller D, Oswald JE, Patel NC, Pukala DM, Quintero O, Scaff DM, Snyder WV, Tope MC, Wagner P, Walch M (2006) The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans Geosci Remote Sensing 44(5):1075–1092. doi:10.1109/TGRS.2006.873771

    Article  Google Scholar 

  • Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the Earth’s Radiant Energy System CERES: an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868. doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2

    Article  Google Scholar 

  • Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(19):L19,803. doi:10.1029/2007GL030135

  • Wu DL, Austin RT, Deng M, Durden SL, Heymsfield AJ, Jiang JH, Lambert A, Li JL, Livesey NJ, McFarquhar GM et al (2009) Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J Geophys Res 114:0148–0227. doi:10.1029/2008JD009946

    Article  Google Scholar 

  • Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Klaus Wyser (SMHI), Simona Ştefănescu (ECMWF) for their aid in setting up and running the model. Special thanks to George E. Ferriter for his linguistic critique of the article. The CERES data are obtained from the NASA Langley Research Centre EOSDIS Distributed Archive Center. Discussions with Norman Loeb and Dave Doelling were beneficial. We would like to thank the following organisations for their open access to the data used in this study: GSFC Earth Science Data and Information Services Center (GES DISC), the Jet Propulsion Laboratory, CloudSat Data Processing Center, and ISCCP, and IPSL/LMD for CALIPSO-GOCCP dataset available at http://climserv.ipsl.polytechnique.fr/cfmip-obs

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Johnston.

Additional information

This paper is a contribution to the special issue on EC-Earth, a global climate and earth system model based on the seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, and developed by the international EC-Earth consortium. This special issue is coordinated by Wilco Hazeleger (chair of the EC-Earth consortium) and Richard Bintanja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, M.S., Eriksson, P., Eliasson, S. et al. The representation of tropical upper tropospheric water in EC Earth V2. Clim Dyn 39, 2713–2731 (2012). https://doi.org/10.1007/s00382-012-1511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1511-0

Keywords

Navigation