Skip to main content

Advertisement

Log in

Risk of fracture prevention in spina bifida patients: correlation between bone mineral density, vitamin D, and electrolyte values

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

The aim of our study was to investigate the relationship between bone mineral density (BMD), vitamin D, and electrolyte blood values in patients with spina bifida, to find a possible therapeutic regimen and an intervention to reduce the risk of fractures in this population.

Methods

BMD values were measured in 49 patients (32 females, 17 males; aged 14.1 ± 3.86 years; range 5–20 years) using dual-energy X-ray absorptiometry (DEXA) and were analyzed based on sex, the level of spinal involvement, vitamin D, and electrolyte values, physical activity, body mass index (BMI), and ambulatory status [patients were divided into three subgroups: full-time wheelchair (FTWC), limited ambulator (LA), and full-time ambulator (FTA)]. These data were analyzed considering sex-, age-, and BMD-matched values and compared with those of normal population.

Results

BMD was significantly lower in these patients compared with that in the general healthy population (Z-score: −1.2 ± 1.8); in particular, females had Z-score values significantly lower that of the males (Z-score: −2.43 ± 2.02; P < 0.0004). In FTWC subgroup, Z-score was lower than that of the other two subgroups (P < 0.009). Vitamin D values were significantly lower compared with those in the general healthy population (vitamin D spina bifida group: 14.6 ± 8.7 mg/dL; normal subjects: 35 ± 9.8 mg/dL; P < 0.001). Subjects with spina bifida showed hypophosphatemia (<3 mg/dL) because of the lower levels of vitamin D (3.1 ± 0.9 mg/dL; P < 0.001).

Conclusions

Spina bifida patients showed lower BMD, vitamin D, and electrolyte values than the healthy population; hence, they have an increase risk of developing pathological fractures. Vitamin D supplementation for a longer time period could reduce this risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Botto L, Moore CA, Khoury MJ, Erickson JD (1999) Neural tube defects. New Engl J Med 341:1509–1519

    Article  CAS  PubMed  Google Scholar 

  2. Satar N, Bauer SB, Shefner J, Kelly MD, Darbey MM (1995) The effects of delayed diagnosis and treatment in patients with an occult spinal dysraphism. J Urol 154:754–758

    Article  CAS  PubMed  Google Scholar 

  3. Lock TR, Aronson DD (1989) Fractures in patients who have myelomeningocele. J Bone Joint Surg 71:1153–1157

    CAS  PubMed  Google Scholar 

  4. Drummond DS, Moreau M, Cruess RL (1981) Post-operative neuropathic fractures in patients with myelomeningocele. Dev Med Child Neurol 23:147–504

    Article  CAS  PubMed  Google Scholar 

  5. Kriss VM, Desai NS (1998) Occult spinal dysraphism in neonates: assessment of high-risk cutaneous stigmata on sonography. Am J Roentgenol 171:1687–1692

    Article  CAS  Google Scholar 

  6. Nelson, Behrman, Kliegman J (2009) Trattato di pediatria. pp 1762–1764

  7. Kriss VM, Kriss TC, Desai NS, Warf BC (1995) Occult spinal dysraphism in the infant. Clin Pediatr 34:650–654

    Article  CAS  Google Scholar 

  8. Akbar M, Bresch B, Raiss P, Fürstenberg CH, Bruckner T, Seyler T et al (2010) Fractures in myelomeningocele. J Orthop Traumatol 11:175–182

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS (2007) Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med 30(Suppl 1):S5–S9

    PubMed Central  PubMed  Google Scholar 

  10. Ausili E, Rigante D, Salvaggio E, Focarelli B, Rendeli C, Ansuini V et al (2012) Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity. Rheumatol Int 32:2737–2743

    Article  PubMed  Google Scholar 

  11. Greulich WW, Pyle JI (eds) (1959) Radiographic atlas of skeletal development of hand and wrist, 2nd edn. Stanford University Press, Palo Alto

    Google Scholar 

  12. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML et al (2008) International society for clinical densitometry 2007 adult and pediatric official positions. Bone 43:1115–1121

    Article  PubMed  Google Scholar 

  13. Bachrach LK (2005) Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol. Metab. Clin. North Amm 34:521–535

    Google Scholar 

  14. Ausili E, Focarelli B, Tabacco F, Fortunelli G, Caradonna P, Massimi L et al (2008) Bone mineral density and body composition in a myelomeningocele children population: Effects of walking ability and sport activity. Eur Rev Med Pharmacol Sci 12:349–354

    CAS  PubMed  Google Scholar 

  15. Levine MA (2012) Assessing bone health in children and adolescents. Indian J Endocrinol Metab 16:S205–S212

    PubMed Central  PubMed  Google Scholar 

  16. Rosenstein BD, Greene WB, Herrington RT, Blum AS (1987) Bone density in myelomeningocele: the effects of ambulatory status and other factors. Dev Med Child Neurol 29:486–494

    Article  CAS  PubMed  Google Scholar 

  17. James CCM (1970) Fractures of the lower limbs in spina bifida cystica: a survey of 44 fractures in 122 children. Dev Med Child Neurol 22(Suppl 22):88–89

    Google Scholar 

  18. Drennan JC, Freehafer AA (1971) Fractures of the lower extremities in paraplegic children. Clin Orthop Relat Res 77:211–217

    CAS  PubMed  Google Scholar 

  19. Goulding A, Rockell JEP, Black RE, Grant AM, Jones IE, Williams SM (2004) Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc 104:250–253

    Article  PubMed  Google Scholar 

  20. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930

    Article  CAS  PubMed  Google Scholar 

  21. Prentice A, Schoenmakers I, Ann Laskey M, De Bono S, Ginty F, Goldberg GR (2006) Symposium on “nutrition and health in children and adolescents” session 1: nutrition in growth and development nutrition and bone growth and development. Proc Nutr Soc 65:348–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Baim S, Leonard MB, Bianchi ML, Hans DB, Kalkwarf HJ, Langman CB et al (2008) Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD pediatric position development conference. J Clin Densitom 11:6–21

    Article  PubMed  Google Scholar 

  23. Bachrach LK, Sills IN (2011) Clinical report—bone densitometry in children and adolescents. Pediatrics 127:189–194

    Article  PubMed  Google Scholar 

  24. Madhusmita M, Danie’le P, Anna P, Paulo Ferrez C-S, Michael K (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122:398. doi:10.1542/peds.2007-1894

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Martinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinelli, V., Dell’Atti, C., Ausili, E. et al. Risk of fracture prevention in spina bifida patients: correlation between bone mineral density, vitamin D, and electrolyte values. Childs Nerv Syst 31, 1361–1365 (2015). https://doi.org/10.1007/s00381-015-2726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2726-2

Keywords

Navigation