Skip to main content

Advertisement

Log in

Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The term “plasma actuator” has been a part of the fluid dynamics flow control vernacular for more than a decade. A particular type of plasma actuator that has gained wide use is based on a single dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures. For these actuators, the mechanism of flow control is through a generated body force vector that couples with the momentum in the external flow. The body force can be derived from first principles and the plasma actuator effect can be easily incorporated into flow solvers so that their placement and operation can be optimized. They have been used in a wide range of applications that include bluff body wake control; lift augmentation and separation control on a variety of lifting surfaces ranging from fixed wings with various degrees of sweep, wind turbine rotors and pitching airfoils simulating helicopter rotors; flow separation and tip-casing clearance flow control to reduce losses in turbines, to control flow surge and stall in compressors; and in exciting instabilities in boundary layers at subsonic to supersonic Mach numbers for turbulent transition control. New applications continue to appear through programs in a growing number of US universities and government laboratories, as well as in Germany, France, England, Netherland, Russia, Japan and China. This paper provides an overview of the physics, design and modeling of SDBD plasma actuators. It then presents their use in a number of applications that includes both numerical flow simulations and experiments together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. 201 Corporate Terrace, Corona, CA.

Abbreviations

C :

capacitance

C D :

drag coefficient

C L :

lift coefficient

D :

drag force

E :

electric field

E b :

breakdown electric field

E s :

sustaining electric field

F + :

reduced frequency = fL sep/U

I :

current

I c :

conduction current

I d :

displacement current

L :

lift force

L sep :

streamwise extent of separation region

P :

power

R :

resistance

Re c :

Reynolds number based on chord length and free-stream velocity

T :

period of ac cycle

T max :

maximum thrust

U :

mean streamwise velocity

U :

free-stream velocity

u′:

root-mean-square of streamwise velocity fluctuations

V :

plasma actuator voltage

V ac :

ac voltage

V p–p :

ac peak-to-peak voltage

c :

wing chord

f ac :

ac excitation frequency of unsteady plasma actuator

f b :

body force

q :

dynamic pressure

rf:

radio frequency

x, y :

axial coordinates

t :

time

α:

angle of attack

αs :

stall angle of attack

α0 L :

zero lift angle of attack

ε0 :

universal charge in a vacuum

λD :

Deby length

ϕ:

phase shift

ω:

2π/f ac

ρc :

charge density

φ:

electric potential

References

  • Asghar A, Jumper EJ, Corke TC (2006) On the use of Reynolds number as the scaling parameter for the performance of plasma actuator in a weakly compressible flow AIAA Paper 2006-21

  • Balcer BE, Franke ME, Rivir RB (2006) Effects of plasma induced velocity on boundary layer Flow AIAA Paper 2006-875

  • BenGadri R, Rabehi A, Massines F, Segur P (1994) Numerical modelling of atmospheric pressure low-frequency glow discharge between insulated elecrodes. In: Proceedings of the XII ESCAMPIG, Netherlands, 23–26 August. pp 228–229

  • Boeuf JP (1987) Numerical model of rf glow discharges. Phys Rev A 36(6):2782–2791

    Article  Google Scholar 

  • Boeuf JP, Pitchford LC (2005) Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J App Phys 97

  • Cavalieri D (1995) On the experimental design for instability analysis on a cone at Mach 3.5 and 6.0 using a corona discharge perturbation method. Dissertation, Illinois Institute of Technology

  • Corke TC, Matlis E (2000) Phased plasma arrays for unsteady flow control AIAA paper 2000-2323

  • Corke T, Cavalieri D, Matlis E (2001) Boundary layer instability on a sharp cone at mach 3.5 with controlled input. AIAA J 40:1015

    Article  Google Scholar 

  • Corke TC, Jumper EJ, Post ML, Orlov D, McLaughlin TE (2002) Application of weakly-ionized plasmas as wing flow-control devices AIAA Paper 2002-0350

  • Corke T, He C, Patel M (2004) Plasma flaps and slats: an application of weakly-ionized plasma actuators AIAA Paper 2004-2127

  • Corke T, Mertz B, Patel M (2006a) Plasma flow control optimized airfoil AIAA Paper 2006-1208

  • Corke TC, Mertz B, Patel MP (2006b) Plasma flow control optimized airfoil AIAA paper 2006-1208

  • Corke T, Post M, Orlov D (2007a) Overview of plasma enhanced aerodynamics: Concepts, optimization, and applications. AIAA J Prop Power

  • Corke TC, Post ML, Orlov DM (2007b) Sdbd plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerosp Sci 43:193–217

    Article  Google Scholar 

  • Davidson G, O’Neil R (1964) Optical radiation from nitrogen and air at high pressure excited by energetic electrons. J Chem Phys 41:3946–3949

    Article  Google Scholar 

  • Decomps P, Massines F, Mayoux C (1994) Electrical and optical diagnosis of an atmospheric pressure glow discharge. Acta Phys Univ Com 47

  • Do H, Kim W, Mungal M, Capelli M (2007) Bluff body flow control using surface dielectric barrier discharges AIAA Paper 2007-0939

  • Douville T, Stephens J, Corke T, Morris S (2006) Turbine blade tip leakage flow control by partial squealer tip and plasma actuators AIAA Paper 2006-20

  • Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19:309

    Article  Google Scholar 

  • Enloe L, McLaughlin T, VanDyken, Kachner, Jumper E, Corke T (2004a) Mechanisms and responses of a single-dielectric barrier plasma actuator: plasma morphology AIAA 42:589–594

  • Enloe L, McLaughlin T, VanDyken, Kachner, Jumper E, Corke T, Post M, Haddad O (2004b) Mechanisms and responses odf a single-dielectric barrier plasma actuator: geometric effects. AIAA 42:595–604

  • Falkenstein Z, Coogan J (1997) Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. J Phys D App Phys 30:817–825

    Article  Google Scholar 

  • Font G (2004) Boundary layer control with atmospheric plasma discharges. AIAA Paper 2004-3574

  • Font G, Morgan WL (2005) Plasma discharges in atmospheric pressure oxygen for boundary layer separation control. AIAA paper 2005-4632

  • Forte M, Jolibois J, Moreau F, Touchard G, Cazalens M (2006) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity—application to flow control. 3rd AIAA flow control conference, AIAA Paper 2006-2863

  • Gaitonde D, Visbal M, Roy S (2005a) Control of flow past a wing section with plasma-based body forces. AIAA paper 2005-5302

  • Gaitonde DV, Visbal MR, Roy S (2005b) Contol of flow past a wing section with plasma-based body forces. AIAA Paper 2005-5302

  • Gibalov V, Pietsch G (2000a) The development of dielectric barrier discharges in gas gaps and surfaces. J Phys D Appl Phys 33:2618

    Article  Google Scholar 

  • Gibalov V, Pietsch G (2000b) The development of dielectric barrier discharges in gas gaps and on surfaces J Phys D 33

  • Goeksel B, Rechenberg I (2004) Active separation flow control experiments in weakly ionized air. In: 10th EUROMECH European Turbulence Conference, Barcelona

  • Goeksel B, Rechenberg I, Greenblatt D, Paschereit C (2006) Steady and unsteady plasma wall jets for separation and circulation control. AIAA Paper 2006-3686

  • Golubovskii Y, Maiorov V, Behnke J, Behnke J (2002) Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. J Phys D Appl Phys 35

  • Greenblatt D, Paschal K, Schaeffler N, Washburn A, Harris J, Yao C (2004) A separation control cfd validation test case. part 1: baseline and steady suction. AIAA Paper 2004-2220

  • He C (2008) SDBD Plasma actuator separation control. Dissertation, University of Notre Dame

  • He C, Corke TC, Patel M (2007) Numerical and experimental analysis of plasma flow control over a hump model. AIAA paper 2007-0935

  • Huang J (2005) Documentation and control of flow separation on a linear cascade of Pak-B blades using plasma actuators. Dissertation, University of Notre Dame

  • Huang J, Corke T, Thomas F (2006a) Plasma actuators for separation sontrol of low pressure turbine blades. AIAA J 44:51

    Article  Google Scholar 

  • Huang J, Corke T, Thomas F (2006b) Unsteady plasma actuators for separation control of low-pressure turbine blades AIAA J 44:1477

    Article  Google Scholar 

  • Hultgren LS, Ashpis DE (2003) Demonstration of separation delay with glow-discharge plasma actuators. AIAA Paper 2003-1025

  • Iqbal M, Corke T, Thomas F (2007) Parametric optimization of single dielectric barrier discharge (sdbd) plasma actuators submitted. AIAA J

  • Kakuta S, Kamata T, Makabe T, Kobayashi S, Terai K, Tamagawa T (1995) Study of surface charges on dielectric electrodes in a radio-frequency glow discharge. J Appl Phys 77

  • Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) Stable glow plasma at atmospheric pressure. J Phys D Appl Phys 21:836

    Article  Google Scholar 

  • Kanazawa S, Kogoma M, Okazaki S, Moriwaki T (1989) Glow plasma treatment at atmospheric presure for surface modification and film deposition. Nuclear Inst Methods Phys Res B37:842

    Article  Google Scholar 

  • Kanzawa S, Kogoma M, Kanazawa S, Moriwaki T, Okazaki S (1990) The improvement of atmospheric-pressure glow plasma method and the deposition of organic films. J Phys D Appl Phys 23:374

    Article  Google Scholar 

  • Kline M, Miller N, Walhout M (2001) Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system. Phys Rev E 64:26402–1

    Article  Google Scholar 

  • Kogelschatz U (1977) In: Proceedings of the international conference on phenomena ionized gases, ICPIG XXIII, Tolouse, FR

  • Kogoma M, Okazaki S (1994) Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure. J Phys D Appl Phys 27:1985

    Article  Google Scholar 

  • Kosinov A, Maslov A, Shevelkov S (1990) Experiments on the stability of supersonic laminar boundary layers. J Fluid Mech 219: 621

    Article  Google Scholar 

  • Kozlov K, Wagner H-E, Brandenburg R, Michel P (2001) Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmosperic pressure. J Phys D Appl Phys 34

  • Kunhardt E (1980) Electrical breakdown of gases: the pre-breakdownstage. IEEE Trans Plasma Sci PS-8:234

    Google Scholar 

  • Kunhardt E (2000) Generation of large volume atmospheric pressure nonequilibrium plasmas. IEEE Trans Plasma Sci 28(1): 189–199

    Article  Google Scholar 

  • Kunhardt E, Luessen L (1981) Electrical breakdown and discharges. Plenum, New York

    Google Scholar 

  • Landau LD, Lifshitz, E (1984) Electrodynamics of continuous media Pergamon

  • Langmuir I (1926) Proc Nat Acad Sci 14:627

    Article  Google Scholar 

  • Likhanskii A, Shneider M, Macheret S, Miles R (2006) Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper 2006-1204

  • List J, Byerley AR, McLaughlin TE, VanDyken RD (2003) Using a plasma actuator to control laminar separation on a linear cascade turbine blade. AIAA Paper 2003-1026

  • Llewellyn-Jones F (1966) The glow discharge and an introduction to plasma physics, Methuen, New York, USA

  • Madani M, Bogaerts A, Gijbels R, Vangeneugden D (2003) Modelling of a dielectric barrier glow discharge at atmospheric pressure in nitrogen. In: International conference on phenomena in ionized gases

  • Massines F, Ghadri R, Decomps P, Rabehi A, Segur P, Mayoux C (1995) Atmospheric pressure dielectric controlled glow discharges: diagnostics and modelling. In: Proceedings of the international conference on phenomena ionized gases, ICPIG XXII, Hoboken, NJ, p 306

  • Massines F, Rabehi A, Decomps P, Ben Gadri R, Segur P, Mayoux C (1998a) Experimental and theoretical study of a glow discharge at atmosperic pressure controlled by dielectric barrier. J Appl Phys 83

  • Massines F, Rabehi A, Descomps P, Gadri R, Segur P, Mayoux C (1998b) Mechanisms of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83-86:2950

    Article  Google Scholar 

  • Matlis EH (2004) Controlled experiments on instabilities and transition to turbulence on a sharp cone at Mach 3.5. Dissertation, University of Notre Dame

  • Matlis E, Corke T (2005) AC plasma anemometer for hypersonic Mach number experiments. AIAA Paper 2005-0952

  • Matlis E, Corke T, Cameron J, Morris S (2008a) A.c. plasma anemometer for axial compressor stall warning. 12th international symposium on transport phenomena and dynamics of rotating machines, 17–22 February

  • Matlis E, Corke T, Gogineni S (2008b) Private communications, University of Notre Dame

  • Meek J, Craggs JDE (1978) Electrical breakdown of gases. Wiley, Chichester

    Google Scholar 

  • Moreau E (2007) Airflow control by non-thermal plasma actuators J Phys D Appl Physics 40:605–636

    Article  Google Scholar 

  • Morris SC, Corke TC, VanNess D, Stephens J, Douville T (2005) Tip clearance control using plasma actuators. AIAA paper 2005-0782

  • Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics, Chap. 12. Wiley, New York

  • Naude N, Cambronne J-P, Gherardi N, Massines F (2004) Electrical model of an atmospheric pressure townsend-like discharge (aptd). Eur Phys J Appl Phys (November 2004) 1–7

  • Nelson C, Cain A, Patel M, Corke T (2006a) Simulation of plasma actuators using the wind-US code. AIAA Paper 2006-634

  • Nelson C, Cain A, Patel M, Corke T (2006b) Simulation of plasma actuators using the wind-US code. AIAA Paper 2006-0634

  • Nelson R, Corke T, Patel M, Ng T (2007) Modification of the flow structure over a UAV wing for roll control. AIAA Paper 2007-0884

  • Okazaki S, Kogoma M, Uehara M, Kimura Y (1993) Appearance of stable glow discharge in air, argon oxygen, and nitrogen at atmospheric pressure using 50 hz source. J Phys D Appl Phys 26:889

    Article  Google Scholar 

  • Orlov DM (2006) Modelling and simulation of single dielectric barrier discharge plasma actuators. Dissertation, University of Notre Dame

  • Orlov D, Corke T (2005) Numerical simulation of aerodynamic plasma actuator effects. AIAA Paper 2005-1083

  • Orlov D, Corke T, Haddad O (2003) DNS modeling of plasma array flow actuators. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 48

  • Orlov D, Corke T, Patel M (2006) Electric circuit model for aerodynamic plasma actuator. AIAA Paper 2006-1206

  • Pai S, Guo X, Zhou T (1996) Closed form analytic solution describing glow discharge plasma. Phys Plasmas 3

  • Pashaie B, Dhali S, Honea F (1994) Electrical characteristics of a coaxial dielectric barrier discharge. J Phys D Appl Phys 27:2107

    Article  Google Scholar 

  • Patel MP, Sowle ZH, Corke TC, He C (2006) Autonomous sensing and control of wing stall using a smart plasma slat. AIAA Paper 2006-1207

  • Patel M, Ng T, Vasudevan S, Corke T, He S (2007a) Aerodynamic control using windward-surface plasma actuators on a separation ramp. J Aircraft 44(6):1889–1895

    Article  Google Scholar 

  • Patel M, Ng T, Vasudevan S, Corke T, He S (2007b) Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J Aircraft 44(4):1264–1274

    Article  Google Scholar 

  • Patel M, Ng T, Vasudevan S, Corke T, Post M, McLaughlin T, Suchomel C (2008) Scaling effects of an aerodynamic plasma actuator. J Aircraft 45(1):223–236

    Article  Google Scholar 

  • Paulus M, Stals L, Rude U, Rauschenbach B (1999) Two-dimensional simulation of plasma-based ion implantation J Appl Phys 85

  • Poggie J (2005) DC glow discharges: a computational study for flow control applications. AIAA Paper 2005-5303

  • Porter C, Baughn J, McLaughlin T, Enloe C, Font G (2006) Temporal force measurements on an aerodynamic plasma actuator. AIAA Paper 2006-104

  • Porter C, McLaughlin T, Enloe L, Font G (2007) Boundary layer control using DBD plasma actuator. AIAA Paper 2007-0786

  • Post ML (2001) Phased plasma actuators for unsteady flow control. Dissertation, M.S. in Aerospace and Mechanical Engineering, University of Notre Dame

  • Post ML (2004) Plasma actuators for separation control on stationary and unstationary airfoils. Dissertation, University of Notre Dame

  • Post ML, Corke TC (2003) Separation control on high angle of attack airfoil using plasma actuator. AIAA Paper 2003-1024

  • Post ML, Corke TC (2004) Separation control using plasma actuators—stationary and oscillatory airfoils. AIAA Paper 2004-0841

  • Post M, Corke T (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42:2177

    Article  Google Scholar 

  • Post M, Erturk E, Corke T (2001) Phased plasma arrays for unsteady flow control. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 46

  • Rabehi A, BenGadri R, Segur P, Massines F, Decomps P (1994) Numerical modelling of high pressure glow discharges controlled by dielectric barrier. In: Proceedings of the converence on electrical insulation and dielectric phenomena, Arlington, TX, 23–26 October, 1994, pp 840–845

  • Raizer Y (1991) Gas discharge physics. Springer, Berlin

    Google Scholar 

  • Rivir R (2007) Effects of pulsed dc discharge plasma actuators in a separated LPT boundary layer. AIAA Paper 2007-0942

  • Rizzetta D, Visbal M (2007) Numerical investigation of plasma-based flow control for a transitional highly-loaded low-pressure turbine. AIAA Paper 2007-0938

  • Roth J (1995a) Industrial plasma engineering. Inst Phys Publishing, Philadelphia

    Google Scholar 

  • Roth J (1995b) Industrial plasma engineering Institute of Physics Publishing

  • Roth J, Sherman D, Wilkinson S (1998) Boundary layer flow control with one atmosphere uniform glow discharge surface plasma. AIAA Paper 1998-0328

  • Roth J, Sherman D, Wilkinson S (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA Journal 38

  • Roy S, Gaitonde DV (2004) Radio frequency induced ionized collisional flow model for application at atmospheric pressures. J Appl Phys

  • Roy S, Gaitonde DV (2005) Modeling surface discharge effects of atmospheric RF on gas flow control. AIAA Paper 2005-0160

  • Roy S, Pandey B, Poggie J, Gaitonde DV (2003) Modeling low pressure collisional plasma sheath with space-charge effect. Phys Plasmas 10:2578–2585

    Article  Google Scholar 

  • Shyy W, Jayaraman B, Andersson A (2002) Modeling of glow discharge-induced fluid dynamics. J Appl Phys 92

  • Suzen Y, Huang P (2006) Simulation of flow separation control using plasma actuators. AIAA paper 2006-877

  • Suzen Y, Huang P, Jacob J, Ashpis D (2005) Numerical simulations of plasma based flow control applications. AIAA Paper 2005-4633

  • Suzen Y, Huang G, Ashpis D (2007) Numerical simulations of flow separation control in low-pressure turbines using plasma actuators. AIAA Paper 2007-0937

  • Thomas FO, Kozlov A, Corke TC (2006) Plasma actuators for bluff body flow control. AIAA paper 2006-2845

  • Thomas F, Kozlov A, Corke T (2008) Plasma actuators for bluff body flow control. AIAA J (in press)

  • Trunec D, Brablec A, Stastny F (1998) Contrib Plasma Phys 38:435

    Article  Google Scholar 

  • Van Ness DK, Corke TC, Morris SC (2006) Turbine tip clearance flow control using plasma actuators. AIAA Paper 2006-21

  • Vidmar R, Stalter K (2003) Air chemistry and power to generate and sustain plasma: plasma lifetime calculations. AIAA Paper 2003-1189

  • Visbal MR, Gaitonde DV (2006) Control of vortical flows using simulated plasma actuators. AIAA Paper 2006-505

  • Voikov V, Corke T, Haddad O (2004) Numerical simulation of flow control over airfoils using plasma actuators. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 49

  • Wilkinson SP (2003) Investigation of an oscillating surface plasma for turbulent drag reduction. AIAA Paper 2003-1023

  • Yokoyama T, Kogoma M, Moriwaki T, Okazaki S (1990) The mechanism of the stabilization of glow plasma at atmospheric pressure. J Phys D Appl Phys 23:1125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Corke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corke, T.C., Post, M.L. & Orlov, D.M. Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46, 1–26 (2009). https://doi.org/10.1007/s00348-008-0582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0582-5

Keywords

Navigation