Skip to main content
Log in

Integrated gene expression profiling and linkage analysis in the rat

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The combined application of genome-wide expression profiling from microarray experiments with genetic linkage analysis enables the mapping of expression quantitative trait loci (eQTLs) which are primary control points for gene expression across the genome. This approach allows for the dissection of primary and secondary genetic determinants of gene expression. The cis-acting eQTLs in practice are easier to investigate than the trans-regulated eQTLs because they are under simpler genetic control and are likely to be due to sequence variants within the gene itself or its neighboring regulatory elements. These genes are therefore candidates both for variation in gene expression and for contributions to whole-body phenotypes, particularly when these are located within known and relevant physiologic QTLs. Multiple trans-acting eQTLs tend to cluster to the same genetic location, implying shared regulatory control mechanisms that may be amenable to network analysis to identify gene clusters within the same metabolic pathway. Such clusters may ultimately underlie development of individual complex, whole-body phenotypes. The combined expression and linkage approach has been applied successfully in several mammalian species, including the rat which has specific features that demonstrate its value as a model for studying complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, et al. (1999) Identification of Cd36 (fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21: 76–83

    CAS  PubMed  Google Scholar 

  • Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, et al. (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439: 851–855

    CAS  PubMed  Google Scholar 

  • Belknap JK (1998) Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav Genet 28: 29–38

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171: 783–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169: 1133–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, et al. (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics.” Nat Genet 37: 225–232

    CAS  PubMed  Google Scholar 

  • Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3: 574–579

    CAS  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: Rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7: 485–486

    CAS  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: 233–242

    CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, et al. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822–828

    CAS  PubMed  Google Scholar 

  • Crusio WE (2004) A note on the effect of within-strain sample sizes on QTL mapping in recombinant inbred strain studies. Genes Brain Behav 3: 249–251

    CAS  PubMed  Google Scholar 

  • Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning DJ, Haley CS (2005) Genetical genomics in humans and model organisms. Trends Genet 21: 377–381

    PubMed  Google Scholar 

  • Dumas P, Sun Y, Corbeil G, Tremblay S, Pausova Z, et al. (2000) Mapping of quantitative trait loci (qtl) of differential stress gene expression in rat recombinant inbred strains. J Hypertens 18: 545–551

    CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286

    CAS  PubMed  Google Scholar 

  • Frantz S, Clemitson JR, Bihoreau MT, Gauguier D, Samani NJ (2001) Genetic dissection of region around the Sa gene on rat chromosome 1: evidence for multiple loci affecting blood pressure. Hypertension 38: 216–221

    CAS  PubMed  Google Scholar 

  • Garrett MR, Meng H, Rapp JP, Joe B (2005) Locating a blood pressure quantitative trait locus within 117 kb on the rat genome: substitution mapping and renal expression analysis. Hypertension 45: 451–459

    CAS  PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521

    CAS  PubMed  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298: 2345–2349

    CAS  PubMed  Google Scholar 

  • Holmdahl R, Lorentzen JC, Lu S, Olofsson P, Wester L, et al. (2001) Arthritis induced in rats with nonimmunogenic adjuvants as models for rheumatoid arthritis. Immunol Rev 184: 184–202

    CAS  PubMed  Google Scholar 

  • Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, et al. (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37: 243–253

    CAS  PubMed  Google Scholar 

  • Janse MJ, Opthof T, Kleber AG (1998) Animal models of cardiac arrhythmias. Cardiovasc Res 39: 165–177

    CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17: 388–391

    CAS  PubMed  Google Scholar 

  • Karp CL, Grupe A, Schadt E, Ewart SL, Keane–Moore M, et al. (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1: 221–226

    CAS  PubMed  Google Scholar 

  • Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156: 899–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, et al. (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104: R25–R31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lepretre F, Linton KJ, Lacquemant C, Vatin V, Samson C, et al. (2004) Genetic study of the CD36 gene in a French diabetic population. Diabetes Metab 30: 459–463

    CAS  PubMed  Google Scholar 

  • Li H, Lu L, Manly KF, Chesler EJ, Bao L, et al. (2005) Inferring Gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet 14: 1119–1125

    CAS  PubMed  Google Scholar 

  • Manly KF, Nettleton D, Hwang JT (2004) Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res 14: 997–1001

    CAS  PubMed  Google Scholar 

  • Miyaoka K, Kuwasako T, Hirano K, Nozaki S, Yamashita S, et al. (2001) CD36 deficiency associated with insulin resistance. Lancet 357: 686–687

    CAS  PubMed  Google Scholar 

  • Moujahidine M, Lambert R, Dutil J, Palijan A, Sivo Z, et al. (2004) Combining congenic coverage with gene profiling in search of candidates for blood pressure quantitative trait loci in Dahl rats. Hypertens Res 27: 203–212

    CAS  PubMed  Google Scholar 

  • Mueller M, Goel A, Thimma M, Dickens NJ, Aitman TJ, et al. (2006) EQTL Explorer: integrated mining of combined genetic linkage and expression experiments. Bioinformatics 22: 509–511

    CAS  PubMed  Google Scholar 

  • Okuda T, Sumiya T, Mizutani K, Tago N, Miyata T, et al. (2002) Analyses of differential gene expression in genetic hypertensive rats by microarray. Hypertens Res 25: 249–255

    CAS  PubMed  Google Scholar 

  • Pravenec M, Klir P, Kren V, Zicha J, Kunes J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7: 217–221

    CAS  PubMed  Google Scholar 

  • Pravenec M, Wallace C, Aitman TJ, Kurtz TW (2003) Gene expression profiling in hypertension research: a critical perspective. Hypertension 41: 3–8

    CAS  PubMed  Google Scholar 

  • Pravenec M, Zidek V, Landa V, Simakova M, Mlejnek P, et al. (2004) Genetic analysis of “metabolic syndrome” in the spontaneously hypertensive rat. Physiol Res 153 Suppl : S15–S22

    Google Scholar 

  • Samani NJ, Lodwick D, Vincent M, Dubay C, Kaiser MA, et al. (1993) A gene differentially expressed in the kidney of the spontaneously hypertensive rat cosegregates with increased blood pressure. J Clin Invest 92: 1099–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302

    CAS  PubMed  Google Scholar 

  • Spence J, Liang T, Foroud T, Lo D, Carr L (2005) Expression profiling and QTL analysis: a powerful complementary strategy in drug abuse research. Addict Biol 10: 47–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc B 66: 187–205

    Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1: 299–308

    PubMed  Google Scholar 

  • Yagil C, Hubner N, Monti J, Schulz H, Sapojnikov M, et al. (2005) Identification of hypertension-related genes through an integrated genomic-transcriptomic approach. Circ Res 96: 617–625

    CAS  PubMed  Google Scholar 

  • Yamashita S, Wakazono K, Nomoto T, Tsujino Y, Kuramoto T, et al. (2005) Expression quantitative trait loci analysis of 13 genes in the rat prostate. Genetics 171: 1231–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yvert G, Brem RB, Whittle J, Akey JM, Foss E, et al. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35: 57–64

    CAS  PubMed  Google Scholar 

  • Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, et al. (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302: 1179

    CAS  PubMed  Google Scholar 

  • Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, et al. (2004) A SNP map of the rat genome generated from cDNA sequences. Science 303: 807

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding to TJA from the MRC Clinical Sciences Centre, from the British Heart Foundation, and from a Wellcome Trust Cardiovascular Functional Genomics initiative; to MP and TJA from the Wellcome Trust Collaborative Research Initiative Grant; and founding from a European Union FP6 Integrated Project for rat functional genomics. MP is an international research scholar of the Howard Hughes Medical Institute and was supported by grant 1M6837805002 from the Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Aitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petretto, E., Mangion, J., Pravanec, M. et al. Integrated gene expression profiling and linkage analysis in the rat. Mamm Genome 17, 480–489 (2006). https://doi.org/10.1007/s00335-005-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0181-1

Keywords

Navigation