Skip to main content

Advertisement

Log in

Dual energy CT: preliminary observations and potential clinical applications in the abdomen

  • Computer Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Dual energy CT (DECT) is a new technique that allows differentiation of materials and tissues based on CT density values derived from two synchronous CT acquisitions at different tube potentials. With the introduction of a new dual source CT system, this technique can now be used routinely in abdominal imaging. Potential clinical applications include evaluation of renal masses, liver lesions, urinary calculi, small bowel, pancreas, and adrenal glands. In CT angiography of abdominal aortic aneurysms, dual energy CT techniques can be used to remove bones from the datasets, and virtual unenhanced images allow differentiation of contrast agent from calcifying thrombus in patients with endovascular stents. This review describes potential applications, practical guidelines, and limitations of dual energy CT in the abdomen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hounsfield GN (1995) Computerized transverse axial scanning (tomography): Part I. Description of system, 1973. Br J Radiol 68:H166–H172

    PubMed  CAS  Google Scholar 

  2. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  3. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  4. Kalva SP, Sahani DV, Hahn PF et al (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  5. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg HI, Cann CE, Moss AA et al (1982) Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol 17:375–380

    Article  PubMed  CAS  Google Scholar 

  7. Cann CE, Gamsu G, Birnberg FA et al (1982) Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 145:493–496

    PubMed  CAS  Google Scholar 

  8. Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  9. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  10. Graser A, Wintersperger BJ, Suess C et al (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR Am.J.Roentgenol 187:695–701

    Article  PubMed  CAS  Google Scholar 

  11. Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: Initial in vitro and clinical experience. Invest Radiol 43:112–119

    Article  PubMed  Google Scholar 

  12. Szolar DH, Kammerhuber F, Altziebler S et al (1997) Multiphasic helical CT of the kidney: increased conspicuity for detection and characterization of small (<3-cm) renal masses. Radiology 202:211–217

    PubMed  CAS  Google Scholar 

  13. Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758

    PubMed  CAS  Google Scholar 

  14. Israel GM, Bosniak MA (2005) How I do it: Evaluating renal masses. Radiology 236:441–450

    Article  PubMed  Google Scholar 

  15. Graser A (2007) Dual energy CT in the assessment of renal masses: Can dual energy virtually unenhanced images replace noncontrast scanning? RSNA 2007 Chicago, IL, USA

  16. Boulay I, Holtz P, Foley WD et al (1999) Ureteral calculi: diagnostic efficacy of helical CT and implications for treatment of patients. AJR Am J Roentgenol 172:1485–1490

    PubMed  CAS  Google Scholar 

  17. Smith RC, Rosenfield AT, Choe KA et al (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794

    PubMed  CAS  Google Scholar 

  18. Poletti PA, Platon A, Rutschmann OT et al (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933

    Article  PubMed  Google Scholar 

  19. Kluner C, Hein PA, Gralla O et al (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50

    Article  PubMed  Google Scholar 

  20. Park S (2007) Medical management of urinary stone disease. Expert Opin Pharmacother 8:1117–1125

    Article  PubMed  CAS  Google Scholar 

  21. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344

    Article  PubMed  CAS  Google Scholar 

  22. Hillman BJ, Drach GW, Tracey P et al (1984) Computed tomographic analysis of renal calculi. AJR Am J Roentgenol 142:549–552

    PubMed  CAS  Google Scholar 

  23. Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  PubMed  CAS  Google Scholar 

  24. Nakada SY, Hoff DG, Attai S et al (2000) Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 55:816–819

    Article  PubMed  CAS  Google Scholar 

  25. Alkadhi H and al. e (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:

  26. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. Eur Radiol Eur Radiol 18:4–17 Epub 2007 Nov 1

    Article  Google Scholar 

  27. Chow LC, Kwan SW, Olcott EW et al (2007) Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. AJR Am J Roentgenol AJR Am J Roentgenol 189:314–322

    Google Scholar 

  28. Mita T, Arita T, Matsunaga N et al (2000) Complications of endovascular repair for thoracic and abdominal aortic aneurysm: an imaging spectrum. Radiographics 20:1263–1278

    PubMed  CAS  Google Scholar 

  29. Rozenblit AM, Patlas M, Rosenbaum AT et al (2003) Detection of endoleaks after endovascular repair of abdominal aortic aneurysm: value of unenhanced and delayed helical CT acquisitions. Radiology 227:426–433

    Article  PubMed  Google Scholar 

  30. Macari M, Chandarana H, Schmidt B et al (2006) Abdominal aortic aneurysm: can the arterial phase at CT evaluation after endovascular repair be eliminated to reduce radiation dose? Radiology 241:908–914

    Article  PubMed  Google Scholar 

  31. Korobkin M, Francis IR, Kloos RT et al (1996) The incidental adrenal mass. Radiol.Clin North Am 34:1037–1054

    PubMed  CAS  Google Scholar 

  32. Israel GM, Korobkin M, Wang C et al (2004) Comparison of unenhanced CT and chemical shift MRI in evaluating lipid-rich adrenal adenomas. AJR Am J Roentgenol 183:215–219

    PubMed  Google Scholar 

  33. Prokesch RW, Chow LC, Beaulieu CF et al (2002) Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology 224:764–768

    Article  PubMed  Google Scholar 

  34. Prokesch RW, Chow LC, Beaulieu CF et al (2002) Local staging of pancreatic carcinoma with multi-detector row CT: use of curved planar reformations initial experience. Radiology 225:759–765

    Article  PubMed  Google Scholar 

  35. Gangi S, Fletcher JG, Nathan MA et al (2004) Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol 182:897–903

    PubMed  Google Scholar 

  36. Semelka RC, Martin DR, Balci C et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401

    Article  PubMed  CAS  Google Scholar 

  37. Kamel IR, Choti MA, Horton KM et al (2003) Surgically staged focal liver lesions: accuracy and reproducibility of dual-phase helical CT for detection and characterization Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. Radiology 227:752–757

    Article  PubMed  Google Scholar 

  38. Schima W, Ba-Ssalamah A, Kurtaran A et al (2007) Post-treatment imaging of liver tumours. Cancer Imaging 7(Spec No A):S28–S36

    Article  PubMed  Google Scholar 

  39. Macari M, Megibow AJ, Balthazar EJ (2007) A pattern approach to the abnormal small bowel: observations at MDCT and CT enterography. AJR Am J Roentgenol 188:1344–1355

    Article  PubMed  Google Scholar 

  40. Megibow AJ, Babb JS, Hecht EM et al (2006) Evaluation of bowel distention and bowel wall appearance by using neutral oral contrast agent for multi-detector row CT. Radiology 238:87–95

    Article  PubMed  Google Scholar 

  41. Bodily KD, Fletcher JG, Solem CA et al (2006) Crohn Disease: mural attenuation and thickness at contrast-enhanced CT Enterography–correlation with endoscopic and histologic findings of inflammation. Radiology 238:505–516

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anno Graser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graser, A., Johnson, T.R.C., Chandarana, H. et al. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19, 13–23 (2009). https://doi.org/10.1007/s00330-008-1122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1122-7

Keywords

Navigation