Skip to main content
Log in

Study of phase separation behavior of poly(N,N-diethylacrylamide) in aqueous solution prepared by RAFT polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of poly(N,N-diethylacrylamide) samples with low molecular weights (1.9 × 103–5.3 × 104) and narrow polydispersities (below 1.5 and usually lower than 1.25) was synthesized by reversible addition-fragmentation chain transfer polymerization. The phase separation behavior of poly(N,N-diethylacrylamide) in aqueous solution was investigated by turbidimetry, fluorescent probe technology and DSC. It is interesting to find that the lower critical solution temperature (LCST) of the samples increases with increasing molecular weight and remains more or less a constant above a critical molecular weight of 1.2 × 104. At the same time, an inverse dependence of LCST on the concentration was found and this effect was more pronounced for lower molecular weight. To further investigate the novel molecular weight dependence of the LCST, the fluorescent probe study was conducted and the experimental results demonstrated that there was an increase in hydrophobicity when decreasing the molecular weight and increasing the concentration and flower-like micelles were probably formed which can further be proved by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Privalov PL (1979) Stability of proteins small globular proteins. Adv Protein Chem 33:167–241. https://doi.org/10.1016/S0065-3233(08)60460-X

    Article  CAS  PubMed  Google Scholar 

  2. Privalov PL, Creighton TE (eds) (1992) In protein folding. W. H. Freeman & Co, New York, p 83

    Google Scholar 

  3. Privalov PL (1982) Stability of proteins: proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104. https://doi.org/10.1016/S0065-3233(08)60468-4

    Article  CAS  PubMed  Google Scholar 

  4. Freire E, Murphy KP (1991) Molecular basis of co-operativity in protein folding. J Mol Biol 222:687–698. https://doi.org/10.1016/0022-2836(91)90505-Z

    Article  CAS  PubMed  Google Scholar 

  5. Bychkova VE, Berni R, Rossi GL, Kutyshenko VP, Ptitsyn OB (1992) Retinol-binding protein is in the molten globule state at low pH. Biochemistry 31:7566–7571. https://doi.org/10.1021/bi00148a018

    Article  CAS  PubMed  Google Scholar 

  6. Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 94:4352–4356. https://doi.org/10.1021/j100373a088

    Article  CAS  Google Scholar 

  7. Shunsuke K, Sokei S, Takahiro O, Tomohiro H, Koichi U, Cheng H, Tetsuo A (2017) NMR studies of water dynamics during sol-to-gel transition of poly(N-isopropylacrylamide) in concentrated aqueous solution. Polymer 109:287–296. https://doi.org/10.1016/j.polymer.2016.12.063

    Article  CAS  Google Scholar 

  8. Takanori T, Tomohiro H, Koichi U, Yukiteru K, Taka-Aki A, Tatsuya S, Noboru K, Yasuyuki T (2016) Effects of syndiotacticity on the dynamic and static phase separation properties of poly(N-isopropylacrylamide) in aqueous solution. J Phys Chem B 120:7724–7730. https://doi.org/10.1021/acs.jpcb.6b03200

    Article  CAS  Google Scholar 

  9. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313. https://doi.org/10.1021/j100345a085

    Article  CAS  Google Scholar 

  10. Kenji M, Tomonari S, Kenichiro K (2016) Liquid–liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature. Sci Rep 6:24657. https://doi.org/10.1038/srep24657

    Article  CAS  Google Scholar 

  11. Wu C, Zhou SQ (1995) Laser light scattering study of the phase transition of poly(N-isopropylacrylamide) in water. 1. Single Chain. Macromolecules 28:8381–8387. https://doi.org/10.1021/ma00128a056

    Article  CAS  Google Scholar 

  12. Zeng F, Zheng X, Tong Z (1998) Network formation in poly(N-isopropyl acrylamide)/water solutions during phase separation. Polymer 39:1249–1251. https://doi.org/10.1016/s0032-3861(97)00471-0

    Article  CAS  Google Scholar 

  13. Lessard DG, Ousalem M, Zhu XX (2001) Effect of the molecular weight on the lower critical solution temperature of poly(N,N-diethylacrylamide) in aqueous solutions. Can J Chem 79:1870–1874. https://doi.org/10.1139/cjc-79-12-1870

    Article  CAS  Google Scholar 

  14. Idziak I, Acoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32:1260–1263. https://doi.org/10.1021/ma981171f

    Article  CAS  Google Scholar 

  15. Mitsuhiro M, Ryo W, Takanori T, Taka-Aki A, Tatsuya S, Noboru K, Yasuyuki T (2016) Rapid phase separation in aqueous solution of temperature-sensitive poly(N,N-diethylacrylamide). Macromol Chem Phys 217:2576–2583. https://doi.org/10.1002/macp.201600239

    Article  CAS  Google Scholar 

  16. Plate NA, Lebedeva LI, Valuev LI (1999) Lower critical solution temperature in aqueous solutions of N-alkyl-substituted polyacrylamides. Polym J 31:21–27. https://doi.org/10.1295/polymj.31.21

    Article  CAS  Google Scholar 

  17. Okano T (1993) Molecular design of temperature-responsive polymers as intelligent materials. Adv Polym Sci 110:179–197. https://doi.org/10.1007/BFb0021133

    Article  CAS  Google Scholar 

  18. Miyajima M, Yoshida M, Sato H, Omichi H, Katakai R, Higuchi WI (1994) In vitro release of 9-β-d-arabinofuranosyladenine from thermo-responsive copoly(acryloyl-l-proline methyl ester/styrene) gels. Eur Polym J 30:827–831. https://doi.org/10.1016/0014-3057(94)90011-6

    Article  CAS  Google Scholar 

  19. Chen JP, Hsu (1997) Preparations and properties of temperature-sensitive poly(N-isopropylacrylamide)-chymotrypsin conjugates. J Mol Catal B Enzym 2:233–241. https://doi.org/10.1016/s1381-1177(96)00032-x

    Article  CAS  Google Scholar 

  20. Xue W, Champ S, Huglin MB (2001) New superabsorbent thermoreversible hydrogels. Polymer 42:2247–2250. https://doi.org/10.1016/S0032-3861(00)00550-4

    Article  CAS  Google Scholar 

  21. Snowden MJ, Thomas D, Vincent B (1993) Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst 118:1367–1369. https://doi.org/10.1039/AN9931801367

    Article  CAS  Google Scholar 

  22. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  Google Scholar 

  23. Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions—a study of lower consolute behavior. J Polym Sci 11:2551–2570. https://doi.org/10.1002/pol.1975.170131113

    Article  Google Scholar 

  24. Eliassaf J (1978) Aqueous solutions of poly(N-isopropylacrylamide). J Appl Polym Sci 22:873–874. https://doi.org/10.1002/app.1978.070220328

    Article  CAS  Google Scholar 

  25. Lee LT, Cabane B (1997) Effects of surfactants on thermally collapsed poly(N-isopropylacrylamide) macromolecules. Macromolecules 30:6559–6566. https://doi.org/10.1021/ma9704469

    Article  CAS  Google Scholar 

  26. Staikos G (1995) Viscometric study of the coil-globule transition of poly(N-isopropylacrylamide) in solutions of surfactant. Macromol Rapid Commun 16:913–917. https://doi.org/10.1002/marc.1995.030161206

    Article  CAS  Google Scholar 

  27. Schild HG, Muthukumar M, Tirrell DA (1991) Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules 24:948–952. https://doi.org/10.1021/ma00004a022

    Article  CAS  Google Scholar 

  28. Tong Z, Zeng F, Zheng X (1999) Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 32:4488–4490. https://doi.org/10.1021/ma990062d

    Article  CAS  Google Scholar 

  29. Otake K, Karaki R, Ebina T, Yokoyama C, Takahashi S (1993) Pressure effects on the aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules 26:2194–2197. https://doi.org/10.1021/ma00061a008

    Article  CAS  Google Scholar 

  30. Xue W, Huglin MB, Jones TGJ (2003) Parameters affecting the lower critical solution temperature of linear and crosslinked poly(N-ethylacrylamide) in aqueous media. Macromol Chem Phys 204:1956–1965. https://doi.org/10.1002/macp.200300008

    Article  CAS  Google Scholar 

  31. Zheng X, Tong Z, Xie XL, Zeng F (1998) Phase separation in poly(N-isopropyl acrylamide)/water solutions I. cloud point curves and microgelation. Polym J (Tokyo) 30:284–288. https://doi.org/10.1295/polymj.30.284

    Article  CAS  Google Scholar 

  32. Elizaveta IT, Vladimir NU, Vanda BL, Stanislav IK, Valentina EB, Oleg BP (1995) ”Domain” coil-globule transition in homopolymers. Macromolecules 28:7519–7524. https://doi.org/10.1021/ma00126a032

    Article  Google Scholar 

  33. Ru GY, Feng JW (2001) Effect of end groups on phase transition and segmental mobility of poly(N-isopropylacrylamide) chains in D2O. J Polym Sci B Polym Phys 49:749–755. https://doi.org/10.1002/polb.22237

    Article  CAS  Google Scholar 

  34. Lazzari M, Liu GJ, Lecommandoux S (2006) Block copolymers in nanoscience. Wiley-VCH, Weinheim

    Book  Google Scholar 

  35. Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New York

    Book  Google Scholar 

  36. Vasilieva YA, Thomas DB, Scales CW, McCormick CL (2004) Direct controlled polymerization of a cationic methacrylamido monomer in aqueous media via the RAFT process. Macromolecules 37:2728–2737. https://doi.org/10.1021/ma035574d

    Article  CAS  Google Scholar 

  37. McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325. https://doi.org/10.1021/ar0302484

    Article  CAS  PubMed  Google Scholar 

  38. Thomas DB, Convertine AJ, Myrick LJ, Scales CW, Smith AE, Lowe AB, Vasilieva YA, Ayres N, McCormick CL (2004) Kinetics and molecular weight control of the polymerization of acrylamide via RAFT. Macromolecules 37:8941–8950. https://doi.org/10.1021/ma048199d

    Article  CAS  Google Scholar 

  39. Donovan MS, Sumerlin BS, Lowe AB, McCormick CL (2002) Controlled/“living” polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules 35:8663–8666. https://doi.org/10.1021/ma0209996

    Article  CAS  Google Scholar 

  40. Thomas DB, Sumerlin BS, Lowe AB, McCormick CL (2003) Conditions for facile, controlled RAFT polymerization of acrylamide in water. Macromolecules 36:1436–1439. https://doi.org/10.1021/ma025960f

    Article  CAS  Google Scholar 

  41. Ganachaud F, Monteiro MJ, Gilbert RG (2000) Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules 33:6738–6745. https://doi.org/10.1021/ma0003102

    Article  CAS  Google Scholar 

  42. Yang HJ, Cole CA, Monji N, Hoffman AS (1990) Preparation of a thermally phase-separating copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide), with a controlled number of active esters per polymer chain. J Polym Sci Part A Polym Chem 28:219–226. https://doi.org/10.1002/pola.1990.080280116

    Article  CAS  Google Scholar 

  43. Ganachaud F, Monteiro MJ, Gilber RG, Dourges MA, Thang SH, Rizzardo E (2000) Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules 33:6738–6745. https://doi.org/10.1021/ma0003102

    Article  CAS  Google Scholar 

  44. Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131. https://doi.org/10.1016/j.polymer.2007.11.020

    Article  CAS  Google Scholar 

  45. Le TP, Moad G, Rizzardo E, Thang SH (1998) PCT Int Appl 9(801):478

    Google Scholar 

  46. Arotcaréna M, Heise B, Ishaya S, Laschewsky A (2002) Switching the Inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J Am Chem Soc 124:3787–3793. https://doi.org/10.1021/ja012167d

    Article  CAS  PubMed  Google Scholar 

  47. Patterson D (1969) Free volume and polymer solubility. A qualitative view. Macromolecules 2:672–677. https://doi.org/10.1021/ma60012a021

    Article  CAS  Google Scholar 

  48. Wang F, Saeki S, Yamaguchi T (1999) Absolute prediction of upper and lower critical solution temperatures in polymer/solvent systems based on corresponding state theory. Polymer 40:2779–2785. https://doi.org/10.1016/S0032-3861(98)00480-7

    Article  CAS  Google Scholar 

  49. Liu Y, He JP, Xu JT, Fan DQ, Tang W, Yang YL (2005) Thermal decomposition of cumyl dithiobenzoate. Macromolecules 38:10332–10335. https://doi.org/10.1021/ma0513970

    Article  CAS  Google Scholar 

  50. Pamies R, Zhu KZ, Nyström B (2009) Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull 62:487–502. https://doi.org/10.1007/s00289-008-0029-4

    Article  CAS  Google Scholar 

  51. Malcolm GN, Rowlinson JS (1957) The thermodynamic properties of aqueous solutions of polyethylene glycol, polypropylene glycol and dioxane. Trans Faraday Soc 53:921–931. https://doi.org/10.1039/TF9575300921

    Article  CAS  Google Scholar 

  52. Baulin VA, Halperin A (2002) Concentration dependence of the flory χ parameter within two-state models. Macromolecules 35:6432–6438. https://doi.org/10.1021/ma020296o

    Article  CAS  Google Scholar 

  53. Matsuyama A, Tanaka F (1990) Theory of solvation-induced reentrant phase separation in polymer solutions. Phys Rev Lett 65:341–344. https://doi.org/10.1103/PhysRevLett.65.341

    Article  CAS  PubMed  Google Scholar 

  54. De Gennes PG (1991) A model for the tack of molten polymers. CR Acad Sci Paris Ser II 313:1415–1418

    Google Scholar 

  55. Painter PC, Berg LP, Veytsman B, Coleman MM (1997) Intramolecular screening in nondilute polymer solutions. Macromolecules 30:7529–7535. https://doi.org/10.1021/ma970792q

    Article  CAS  Google Scholar 

  56. Kalyanasundaram K, Thomos JK (1997) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044. https://doi.org/10.1021/ja00449a004

    Article  Google Scholar 

  57. Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040. https://doi.org/10.1021/ma00005a010

    Article  CAS  Google Scholar 

  58. Turro NJ, Grätzel M, Braun A (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed Eng 19:675–696. https://doi.org/10.1002/anie.198006751

    Article  Google Scholar 

  59. Tang WT, Hadziioannou G, Smith BA, Frank C (1988) Facile method for labelling polystyrene with various fluorescent dyes. Polymer 29:1313–1317. https://doi.org/10.1016/0032-3861(88)90062-6

    Article  CAS  Google Scholar 

  60. Major MD, Torkelson JM, Brearly AM (1990) Fluorescence energy transfer studies of styrene-isoprene diblock copolymer solutions. Macromolecules 23:1700–1710. https://doi.org/10.1021/ma00208a025

    Article  CAS  Google Scholar 

  61. Nagasaki Y, Okada T, Scholz C, Lijima M, Kato M, Kataoka K (1998) The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules 31:1473–1479. https://doi.org/10.1021/ma971294k

    Article  CAS  Google Scholar 

  62. Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352. https://doi.org/10.1021/ma00078a034

    Article  CAS  Google Scholar 

  63. Itakura M, Inomata K, Nose T (2000) Aggregation behavior of poly(N,N-diethylacrylamide) in aqueous solution. Polymer 41:8681–8687. https://doi.org/10.1016/S0032-3861(00)00267-6

    Article  CAS  Google Scholar 

  64. Freitag R, Baltes T, Eggert M (1994) A comparison of thermoreactive water-soluble poly-N,N-diethylacrylamide prepared by anionic and by group transfer polymerization. J Polym Sci Part A Polym Chem 32:3019–3030. https://doi.org/10.1002/pola.1994.080321603

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation (21404109) and Science Foundation of China University of Petroleum-Beijing at Karamay (RCYJ2016B-03-003, RCYJ2016B-02-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, H. & Liu, H. Study of phase separation behavior of poly(N,N-diethylacrylamide) in aqueous solution prepared by RAFT polymerization. Polym. Bull. 76, 825–848 (2019). https://doi.org/10.1007/s00289-018-2411-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2411-1

Keywords

Navigation