Skip to main content
Log in

Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through “click” onto grafting method and self-assembly

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Optically active, thermosensitive, and amphiphilic polymer brushes, which consist of helical poly(N-propargylamide) main chains and thermosensitive poly(N-isopropylacrylamide) (PNIPAm) side chains, were prepared via a novel methodology combining catalytic polymerization, atom transfer radical polymerization (ATRP), and click chemistry. Helical poly(N-propargylamide) bearing α-bromoisobutyryl pendent groups was synthesized via catalytic polymerization, followed by substituting the –Br moieties with azido groups. Then, alkynyl terminated PNIPAm formed via ATRP was successfully grafted onto the azido functionalized helical polymer backbones via click chemistry, providing the expected polymer brushes. GPC, FT-IR, and 1H-NMR measurements indicated the successful synthesis of the novel amphiphilic polymer brushes. UV–vis and CD spectra evidently demonstrated the helical structures of the polymer backbones and the considerable optical activity of the final brushes. The polymer brushes self-assembled in aqueous solution forming core/shell structured nanoparticles, which were comprised of optically active cores (helical polyacetylenes) and thermosensitive shells (PNIPAm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hadjichristidis N, Iatroua H, Pitsikalisa M, Maysb J (2006) Macromolecular architectures by living and controlling/living polymerizations. Prog Polym Sci 31:1068–1132

    Article  CAS  Google Scholar 

  2. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A (2005) Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 30:725–782

    Article  CAS  Google Scholar 

  3. Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785

    Article  CAS  Google Scholar 

  4. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers Techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  5. Xu Y, Bolisetty S, Ballauff M, Müller AHE (2009) Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes. J Am Chem Soc 131:1640–1641

    Article  CAS  Google Scholar 

  6. Li C, Gunari N, Fischer K, Janshoff A, Schmidt M (2004) New perspectives for the design of molecular actuators: thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angew Chem Int Ed 43:1101–1104

    Article  CAS  Google Scholar 

  7. Sheiko SS, Möller M (2001) Visualization of macromolecules—a first step to manipulation and controlled response. Chem Rev 101:4099–4123

    Article  CAS  Google Scholar 

  8. Tsukahara Y, Namba S, Iwasa J, Nakano Y, Kaeriyama K, Takahashi M (2001) Bulk properties of poly(macromonomer)s of increased backbone and branch lengths. Macromolecules 34:2624–2629

    Article  CAS  Google Scholar 

  9. Sheiko SS, Prokhorova SA, Beers KL, Matyjaszewski K, Potemkin II, Khokhlov AR, Möller M (2001) Single molecule rod-globule phase transition for brush molecules at a flat interface. Macromolecules 34:8354–8360

    Article  CAS  Google Scholar 

  10. Hadjichristidis N, Pitsikalis M, Iatrou H, Pispas S (2003) The strength of the macromonomer strategy for complex macromolecular architecture: molecular characterization, properties and Applications of polymacromonomers. Macromol Rapid Commun 24:979–1013

    Article  CAS  Google Scholar 

  11. Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36:6746–6755

    Article  CAS  Google Scholar 

  12. Fu GD, Phua SJ, Kang ET, Neoh KG (2005) Tadpole-shaped amphiphilic block-graft copolymers prepared via consecutive atom transfer radical polymerization. Macromolecules 38:2612–2619

    Article  CAS  Google Scholar 

  13. Börner HG, Beers K, Matyjaszewski K, Sheiko SS, Möller M (2001) Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization. Macromolecules 34:4375–4383

    Article  Google Scholar 

  14. Gao H, Matyjaszewski K (2007) Synthesis of molecular brushes by “grafting onto” method: combination of ATRP and click reactions. J Am Chem Soc 129:6633–6639

    Article  CAS  Google Scholar 

  15. Ranjan R, Brittain WJ (2007) Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223

    Article  CAS  Google Scholar 

  16. Cheng C, Khoshdel E, Wooley KL (2006) Facile one-pot synthesis of brush polymers through Tandem catalysis using Grubbs’ catalyst for both ring-opening metathesis and atom transfer radical polymerizations. Nano Lett 6:1741–1746

    Article  CAS  Google Scholar 

  17. Dag A, Sahin H, Durmaz H, Hizal G, Tunca U (2011) Block-brush copolymer via ROMP and sequential double click reaction strategy. J Polym Sci, Part A: Polym Chem 49:886–892

    Article  CAS  Google Scholar 

  18. Cheng C, Qi K, Khoshdel E, Wooley KL (2006) Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. J Am Chem Soc 128:6808–6809

    Article  CAS  Google Scholar 

  19. Gu L, Shen Z, Zhang S, Lu GL, Zhang XH, Huang XY (2007) Novel amphiphilic centipede-like copolymer bearing polyacrylate backbone and poly(ethylene glycol) and polystyrene side chains. Macromolecules 40:4486–4493

    Article  CAS  Google Scholar 

  20. Cheng ZP, Zhu XL, Fu GD, Kang ET, Neoh KG (2005) Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP. Macromolecules 38(7):187–7192

    Google Scholar 

  21. Zhang W, Shiotsuki M, Masuda T (2007) A helical poly(macromonomer) consisting of a polyacetylene main chain and polystyrene side chains. Macromol Rapid Commun 28:1115–1121

    Article  CAS  Google Scholar 

  22. Maeda K, Kamiya N, Yashima E (2004) Poly(phenylacetylene)s bearing a peptide pendant: helical conformational changes of the polymer backbone stimulated by the pendant conformational change. Chem Eur J 10:4000–4010

    Article  CAS  Google Scholar 

  23. Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW (2006) Steric communication of chiral information observed in dendronized polyacetylenes. J Am Chem Soc 128:16365–16372

    Article  CAS  Google Scholar 

  24. Bakandritsos A, Bouropoulos N, Zboril R, Iliopoulos K, Boukos N, Chatzikyriakos G, Couris S (2008) Optically active spherical polyelectrolyte brushes with a nanocrystalline magnetic core. Adv Funct Mater 18:1694–1706

    Article  CAS  Google Scholar 

  25. Ding L, Huang YY, Zhang YY, Deng JP, Yang WT (2011) Optically active amphiphilic polymer brushes based on helical polyacetylenes: preparation and self-assembly into core/shell particles. Macromolecules 44:736–743

    Article  CAS  Google Scholar 

  26. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  27. Lutz JF (2007) 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    Article  CAS  Google Scholar 

  28. Lodge TP (2009) A virtual issue of Macromolecules: “Click chemistry in macromolecular science”. Macromolecules 42:3827–3829

    Article  CAS  Google Scholar 

  29. Bertoldo M, Zampano G, Terra F, Villari V, Castelvetro V (2011) Amphiphilic amylose-g-poly(meth)acrylate copolymers through “Click” onto grafting method. Biomacromolecules 12:388–398

    Article  CAS  Google Scholar 

  30. Yin J, Ge ZS, Liu H, Liu SY (2009) Synthesis of amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N-isopropylacrylamide) grafts via a combination of ATRP and click chemistry. J Polym Sci, Part A: Polym Chem 47:2608–2619

    Article  CAS  Google Scholar 

  31. Bao HQ, Li L, Gan HL, Ping Y, Li J, Ravi P (2010) Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43:5679–5687

    Article  CAS  Google Scholar 

  32. Xu N, Wang R, Du FS, Li ZC (2009) Synthesis of amphiphilic biodegradable glycocopolymers based on poly(ε-caprolactone) by ring-opening polymerization and click chemistry. J Polym Sci, Part A: Polym Chem 47:3583–3594

    Article  CAS  Google Scholar 

  33. Yuan YY, Du Q, Wang YC, Wang J (2010) One-pot synthesis of amphiphilic centipede-like brush copolymers via combination of ring-opening polymerization and “click” chemistry. Macromolecules 43:1739–1746

    Article  CAS  Google Scholar 

  34. Han DH, Tong X, Zhao Y (2011) One-pot synthesis of brush diblock copolymers through simultaneous ATRP and clicking coupling. Macromolecules 44:5531–5536

    Article  CAS  Google Scholar 

  35. Sun JP, Hu JW, Liu GJ, Xiao DS, He GP, Lu RF (2011) Efficient synthesis of well-defined amphiphilic cylindrical brushes polymer with high grafting density: interfacial “click” chemistry approach. J Polym Sci, Part A: Polym Chem 49:1282–1288

    Article  CAS  Google Scholar 

  36. Fan XS, Wang GW, Huang JL (2011) Synthesis of macrocyclic molecular brushes with amphiphilic block copolymers as side chains. J Polym Sci, Part A: Polym Chem 49:1361–1367

    Article  CAS  Google Scholar 

  37. Engler AC, Lee H, Hammond PT (2009) Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew Chem Int Ed 48:9334–9338

    Article  CAS  Google Scholar 

  38. Ostaci RV, Damiron D, Grohens Y, Léger L, Drockenmuller E (2010) Click chemistry grafting of Poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes. Langmuir 26:1304–1310

    Article  CAS  Google Scholar 

  39. Gao C, Zheng X (2009) Facile synthesis and self-assembly of multihetero-arm hyperbranched polymer brushes. Soft Matter 5:4788–4796

    Article  CAS  Google Scholar 

  40. Ding L, Jiao XF, Deng JP, Zhao WG, Yang WT (2009) Catalytic polymerizations of hydrophobic, substituted, acetylene monomers in an aqueous medium by using a monomer/hydroxypropyl-β-cyclodextrin inclusion complex. Macromol Rapid Commun 30:120–125

    Article  CAS  Google Scholar 

  41. Zhang ZG, Deng JP, Zhao WG, Wang JM, Yang WT (2007) Synthesis of optically active poly(N-propargylsulfamides) with helical conformation. J Polym Sci, Part A: Polym Chem 45:500–508

    Article  CAS  Google Scholar 

  42. Deng JP, Luo XF, Zhao WG, Yang WT (2008) A novel type of optically active helical polymers: synthesis and characterization of poly(N-propargylureas). J Polym Sci, Part A: Polym Chem 46:4112–4121

    Article  CAS  Google Scholar 

  43. Luo XF, Deng JP, Yang WT (2011) Helix-sense-selective polymerizations of achiral substituted acetylenes in chiral micelles. Angew Chem Int Ed 50:4909–4912

    Article  CAS  Google Scholar 

  44. Luo XF, Li L, Deng JP, Guo TT, Yang WT (2010) Asymmetric catalytic emulsion polymerization in chiral micelles. Chem Commun 46:2745–2747

    Article  CAS  Google Scholar 

  45. Deng JP, Chen B, Luo XF, Yang WT (2009) Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems. Macromolecules 42:933–938

    Article  CAS  Google Scholar 

  46. Chen B, Deng JP, Liu XQ, Yang WT (2010) Novel category of optically active core/shell nanoparticles: the core consisting of a helical-substituted polyacetylene and the shell consisting of a vinyl polymer. Macromolecules 43:3177–3182

    Article  CAS  Google Scholar 

  47. Luo XF, Liu XQ, Chen B, Deng JP, Yang WT (2010) Optically active composite nanoparticles with chemical bonds between core and shell. J Polym Sci, Part A: Polym Chem 48:5611–5617

    Article  CAS  Google Scholar 

  48. Chen B, Deng JP, Yang WT (2011) Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica: preparation and application for enantioselective crystallization. Adv Funct Mater 21:2345–2350

    Article  CAS  Google Scholar 

  49. Chen B, Deng JP, Tong LY, Yang WT (2010) Optically active helical polyacetylene@silica hybrid organic-inorganic core/shell nanoparticles: preparation and application for enantioselective crystallization. Macromolecules 43:9613–9619

    Article  CAS  Google Scholar 

  50. Zhou K, Tong LY, Deng JP, Yang WT (2010) Hollow polymeric microspheres grafted with optically active helical polymer chains: preparation and their chiral recognition ability. J Mater Chem 20:781–789

    Article  CAS  Google Scholar 

  51. Tabei J, Nomura R, Masuda T (2002) Conformational study of poly(N-propargylamides) having bulky pendant groups. Macromolecules 35:5405–5409

    Article  CAS  Google Scholar 

  52. Schrock RR, Osborn JA (1970) π-Bonded complexes of the tetraphenylborate ion with Rhodium(I) and Iridium(I). Inorg Chem 9:2339–2343

    Article  CAS  Google Scholar 

  53. Lian XM, Wu DX, Song XH, Zhao HY (2010) Synthesis and self-assembly of amphiphilic asymmetric macromolecular brushes. Macromolecules 43:7434–7445

    Article  CAS  Google Scholar 

  54. Fujiki M (2001) Optically active polysilylenes: state-of-the-art chiroptical polymers. Macromol Rapid Commun 22:539–563

    Article  CAS  Google Scholar 

  55. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374:240–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “National Natural Science Foundation of China” (21174010, 20974007), the “Fundamental Research Funds for the Central Universities” (ZZ1117), and the “Major Project for Polymer Chemistry and Physics Subject Construction from Beijing Municipal Education Commission (BMEC)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Deng or Wantai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, L., Chen, C., Deng, J. et al. Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through “click” onto grafting method and self-assembly. Polym. Bull. 69, 1023–1040 (2012). https://doi.org/10.1007/s00289-012-0790-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0790-2

Keywords

Navigation