Skip to main content

Advertisement

Log in

A discrete time neural network model with spiking neurons: II: Dynamics with noise

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We provide rigorous and exact results characterizing the statistics of spike trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and where neurons are submitted to noise, without restriction on the synaptic weights. We show the existence and uniqueness of an invariant measure of Gibbs type and discuss its properties. We also discuss Markovian approximations and relate them to the approaches currently used in computational neuroscience to analyse experimental spike trains statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian E, Zotterman Y (1926) The impulses produced by sensory nerve endings. Part II: the response of a single end organ. J Physiol (Lond) 61: 151–171

    Google Scholar 

  • Benda J, Herz A (2003) A universal model for spike-frequency adaptation. Neural Computtion 15(11): 2523–2564

    Article  MATH  Google Scholar 

  • Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25: 2312–2321

    Article  Google Scholar 

  • Bowen R (2008) Equilibrium states and the ergodic theory of Anosov diffeomorphisms, 2nd revised version. In: Lecture notes in mathematics, vol 470. Springer-Verlag

  • Bressaud X, Fernandez R, Galves A (1999) Decay of correlations for non hölderian dynamics. A coupling approach. Electron J Probab 4(3): 1–19

    MathSciNet  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671

    Article  Google Scholar 

  • Cessac B (2008) A discrete time neural network model with spiking neurons I. Rigorous results on the spontaneous dynamics. J Math Biol 56(3): 311–345

    Article  MathSciNet  MATH  Google Scholar 

  • Cessac B, Sepulchre J (2004) Stable resonances and signal propagation in a chaotic network of coupled units. Phys Rev E 70: 056111

    Article  Google Scholar 

  • Cessac B, Sepulchre J (2006) Transmitting a signal by amplitude modulation in a chaotic network. Chaos 16: 013104

    Article  MathSciNet  Google Scholar 

  • Cessac B, Viéville T (2008) On dynamics of integrate-and-fire neural networks with adaptive conductances. Front Neurosci 2(2): 1–20

    Google Scholar 

  • Cessac B, Rostro-Gonzalez H, Vasquez J, Viéville T (2009) How gibbs distribution may naturally arise from synaptic adaptation mechanisms: a model based argumentation. J Stat Phys 136(3): 565–602

    Article  MathSciNet  MATH  Google Scholar 

  • Chazottes J (1999) Entropie relative, dynamique symbolique et turbulence. PhD thesis, Université de Provence-Aix Marseille I

  • Chazottes J, Keller G (2009) Pressure and equilibrium states in ergodic theory. In: Ergodic theory. Encyclopedia of complexity and system science. Springer, Berlin (to appear)

  • Coelho Z, Quas A (1998) Criteria for d-continuity. Trans Am Math Soc 350(8): 3257–3268

    Article  MathSciNet  MATH  Google Scholar 

  • Crook S, Ermentrout G, Bower J (1998) Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators. Neural Comput 10(4): 837–854

    Article  Google Scholar 

  • Csiszar I (1984) Sanov property, generalized i-projection and a conditional limit theorem. Ann Prob 12(3): 768–793

    Article  MathSciNet  MATH  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    MATH  Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13(6): 1285–1310

    Article  MATH  Google Scholar 

  • Gantmacher FR (1998) The theory of matrices. AMS Chelsea Publishing, Providence

    Google Scholar 

  • Gerstner W, Kistler W (2002a) Spiking neuron models. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gerstner W, Kistler WM (2002b) Mathematical formulations of hebbian learning. Biol Cybern 87: 404–415

    Article  MATH  Google Scholar 

  • Grammont F, Riehle A (1999) Precise spike synchronization in monkey motor cortex involved in preparation for movement. Exp Brain Res 128: 118–122

    Article  Google Scholar 

  • Grammont F, Riehle A (2003) Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol Cybern 88: 360–373

    Article  MATH  Google Scholar 

  • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5): 1063–1070

    Article  Google Scholar 

  • Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106: 620

    Article  MathSciNet  Google Scholar 

  • Johansson A, Oberg A (2003) Square summability of variations of g-functions and uniqueness of g-measure. Math Res Lett 10: 587–601

    MathSciNet  MATH  Google Scholar 

  • Jolivet R, Lewis T, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92: 959–976

    Article  Google Scholar 

  • Jolivet R, Rauch A, Lscher H-R, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35–49

    Article  MathSciNet  MATH  Google Scholar 

  • Keane M (1972) Strongly mixing g-measures. Invent Math 16: 309–324

    Article  MathSciNet  MATH  Google Scholar 

  • Keller G (1998) Equilibrium states in ergodic theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kirst C, Geisel T, Timme M (2009) Sequential desynchronization in networks of spiking neurons with partial reset. Phys Rev Lett 102: 068101

    Article  Google Scholar 

  • Kitchens BP (1998) Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Springer-Verlag, New York

    MATH  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9: 620–635

    Google Scholar 

  • Ledrappier F (1974) Principe variationnel et systèmes dynamiques symboliques. Z Wahr verw Gebiete 30(185): 185–202

    Article  MathSciNet  MATH  Google Scholar 

  • Maillard G (2007) Introduction to chains with complete connections. Ecole Federale Polytechnique de Lausanne, winter 2007

  • Marre O, Boustani SE, Frégnac Y, Destexhe A (2009) Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys Rev Lett 102: 138101

    Article  Google Scholar 

  • Nirenberg S, Latham P (2003) Decoding neuronal spike trains: how important are correlations. Proc Nat Acad Sci 100(12): 7348–7353

    Article  Google Scholar 

  • Onicescu O, Mihoc G (1935) Sur les chaînes statistiques. C R Acad Sci Paris 200

  • Perrinet L (2008) Sparse spike coding: applications of neuroscience to the processing of natural images. In: Society of Photo-Optical Instrumentation Engineers (ed) Proceedings of SPIE, the International Society for Optical Engineering, number ISSN 0277-786X CODEN PSISDG, Bellingham, WA, ETATS-UNIS

  • Pouzat C, Chaffiol A (2009) On goodness of fit tests for models of neuronal spike trains considered as counting processes. http://arxiv.org/abs/0909.2785v1

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1996) Spikes, exploring the neural code. MIT Press, Cambridge

    MATH  Google Scholar 

  • Riehle A, Grammont F, Diesmann M, Grün S (2000) Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol (Paris) 94: 569–582

    Article  Google Scholar 

  • Roudy Y, Nirenberg S, Latham P (2009) Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLOS Comput Biol 5(5): e1000380

    Article  Google Scholar 

  • Rudolph M, Destexhe A (2006) Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput 18: 2146–2210

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle D (1969) Statistical mechanics: rigorous results. Benjamin, New York

    MATH  Google Scholar 

  • Ruelle D (1978) Thermodynamic formalism. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Ruelle D (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95: 393–468

    Article  MathSciNet  MATH  Google Scholar 

  • Rullen RV, Thorpe S (2001) Rate coding versus temporal order coding: what the retina ganglion cells tell the visual cortex. Neural Comput 13(6): 1255–1283

    Article  MATH  Google Scholar 

  • Schneidman E, Berry M, Segev R, Bialek W (2006) Weak pairwise correlations imply string correlated network states in a neural population. Nature 440: 1007–1012

    Article  Google Scholar 

  • Seneta E (2006) Non-negative matrices and Markov chains. Springer, New York

    MATH  Google Scholar 

  • Sinai Y (1972) Gibbs measures in ergodic theory. Russ Math Surveys 27(4): 21–69

    Article  MathSciNet  MATH  Google Scholar 

  • Soula H, Beslon G, Mazet O (2006) Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput 18(1): 60–79

    Article  MathSciNet  MATH  Google Scholar 

  • Thorpe S (1990) Spike arrival times: a highly efficient coding scheme for neural networks. In: Parallel processing neural systems and computers, pp 91–94

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520–522

    Article  Google Scholar 

  • Tkacik G, Schneidman E, Berry M, Bialek W (2006) Ising models for networks of real neurons. arXiv: q-bio/0611072

  • Touboul J, Faugeras O (2007) The spikes trains probability distributions: a stochastic calculus approach. J Physiol (Paris) 101(1–3): 78–98

    Article  Google Scholar 

  • Touboul J, Faugeras O (2009) A markovian event-based framework for stochastic spiking neural networks. Technical report, arXiv, 2009. Neural Comput (submitted)

  • Toyoizumi T, Pfister J-P, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing dependent plasticity: synaptic memory and weight distribution. Neural Comput 19: 639–671

    Article  MathSciNet  MATH  Google Scholar 

  • Vasquez J, Cessac B, Vieville T (2010) Entropy-based parametric estimation of spike train statistics. J Comput Neurosci (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cessac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cessac, B. A discrete time neural network model with spiking neurons: II: Dynamics with noise. J. Math. Biol. 62, 863–900 (2011). https://doi.org/10.1007/s00285-010-0358-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0358-4

Keywords

Mathematics Subject Classification (2000)

Navigation