Skip to main content
Log in

Identification of a Novel HOG1 Homologue from an Industrial Glycerol Producer Candida glycerinogenes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Candida glycerinogenes, a glycerol production industrial strain with hyperosmo-adaptation can grow well in 15 % (w/v) NaCl or 55 % (w/v) glucose. To understand the osmo-adaptation mechanism in C. glycerinogenes, the mitogen-activated protein kinase HOG1 gene (CgHOG1), which plays an essential role in the yeast hyperosmotic response, was isolated by degenerate PCR and SEFA-Formed Adaptor PCR. The CgHOG1 gene was then transformed in Saccharomyces cerevisiae hog1Δ null mutant, which restored the recombination S. cerevisiae to the wild-type phenotype with osmo-adaptation. To further clarify the function of CgHOG1, the phosphorylation of CgHOG1 and transcription of the glycerol-3-phosphate dehydrogenase gene (GPD1) of the CgHOG1-harbouring S. cerevisiae mutant was detected, and found to be similar to that of wild-type S. cerevisiae. In addition, the recombination S. cerevisiae with CgHOG1 gene significantly accumulated intracellular glycerol when stressed with NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alonso-Monge R, Roman E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912

    Article  Google Scholar 

  2. Bansal PK, Mondal AK (2000) Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1 delta strain of Saccharomyces cerevisiae. Yeast 16:81–88

    Article  PubMed  CAS  Google Scholar 

  3. Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20:117–122

    Article  PubMed  CAS  Google Scholar 

  4. Cao XX, Meng M, Wang YY, Wang CL, Hou LH (2011) Identification of salt-tolerant gene HOG1 in Torulopsis versatilis. Biotechnol Lett 33:1449–1456

    Article  PubMed  CAS  Google Scholar 

  5. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways. Biochim Biophys Acta 1773(8):1311–1340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Chen XZ, Fang HY, Rao ZM, Shen W, Zhuge B, Wang ZX, Zhuge J (2008) Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res 8:725–734

    Article  PubMed  CAS  Google Scholar 

  7. Enslen H, Davis RJ (2001) Regulation of MAP kinases by docking domains. Biol Cell 93:5–14

    Article  PubMed  CAS  Google Scholar 

  8. de Eulàlia N, Paula MA, Francesc P (2002) Dealing with osostress through MAP kinase actvation. EMBO Rep 3:735–740

    Article  Google Scholar 

  9. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    Article  PubMed  CAS  Google Scholar 

  12. Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  PubMed  CAS  Google Scholar 

  13. Konte T, Plemenitas A (2013) The HOG signal transduction pathway in the halophilic fugus Wallemia ichthyophaga : identification and characterization of MAP kinases WiHog1A and WiHog1B. Extremophiles 17(4):623–636

    Article  PubMed  CAS  Google Scholar 

  14. Pelet S, Rudolf F, Nadal-Ribelles M, de Nadal E, Posas F, Peter M (2011) Transient activation of the HOG MAPK pathway regulates bimodal gene expression. Science 332:732–735

    Article  PubMed  CAS  Google Scholar 

  15. Qian JC, Qin XL, Y Q, Chu J, Wang YH (2011) Cloning and characterization of Kluyveromyces marxianus Hog1 gene. Biotechnol Lett 33:571–575

    Article  PubMed  CAS  Google Scholar 

  16. Reyes G, Romans A, Nguyen CK, May GS (2006) Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot Cell 5:1934–1940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ricky A, Katarina G, Stefan H, Johan MT, Lennart A (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16(9):2179–2187

  18. Ste´phanie B, Gwenael RR, Martine F, Bruno DS, Florence B, Nicolas P (2008) Insight into the role of HOG pathway components Ssk2p, Pbs2p, and Hog1p in the opportunistic yeast Candida lusitaniae. Eukaryot Cell 7(12):2179–2183

    Article  Google Scholar 

  19. Turk M, Plemenitas A (2002) The HOG pathway in the halophilic black yeast Hortea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216:193–199

    Article  PubMed  CAS  Google Scholar 

  20. Wang SM, He J, Cui ZL, Li SP (2007) Self-Formed Adaptor PCR: a Simple and Efficient Method for Chromosome Walking. Appl Environ Microbiol 73(15):5048–5051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wang ZX, Zhuge J, Cao Y, Chen J, Fang HY (2000) The key enzymes of metabolisms of glycerol in Candida glycerolgenesis. Acta Microbiol Sin 40:180–187

    CAS  Google Scholar 

  22. Wang ZX, Zhuge J, Fang HY, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  PubMed  CAS  Google Scholar 

  23. Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol 55:686–692

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, NO.2011AA02A207, NO.2012AA021201), Natural Science Foundation of China (NO.31270080), Natural Science Foundation of Jiangsu Province (No. BK20140138), Jiangnan University Independent Scientific Research Program (No. JUSRP1008, No. JUSRP11431) and the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ji.

Additional information

Hao Ji and Xinyao Lu contributed equally to this study and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Lu, X., Wang, C. et al. Identification of a Novel HOG1 Homologue from an Industrial Glycerol Producer Candida glycerinogenes . Curr Microbiol 69, 909–914 (2014). https://doi.org/10.1007/s00284-014-0670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0670-0

Keywords

Navigation