Skip to main content
Log in

Functional analysis of ars gene cluster of Pannonibacter indicus strain HT23T (DSM 23407T) and identification of a proline residue essential for arsenate reductase activity

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arsenic is a naturally occurring ubiquitous highly toxic metalloid. In this study, we have identified ars gene cluster in Pannonibacter indicus strain HT23T (DSM 23407T), responsible for reduction of toxic pentavalent arsenate. The ars gene cluster is comprised of four non-overlapping open reading frames (ORFs) encoding a transcriptional regulator (ArsR), a low molecular weight protein tyrosine phosphatases (LMW-PTPase) with hypothetical function, an arsenite efflux pump (Acr3), and an arsenate reductase (ArsC). Heterologous expression of arsenic inducible ars gene cluster conferred arsenic resistance to Escherichia coliars mutant strain AW3110. The recombinant ArsC was purified and assayed. Site-directed mutagenesis was employed to ascertain the role of specific amino acids in ArsC catalysis. Pro94X (X = Ala, Arg, Cys, and His) amino acid substitutions led to enzyme inactivation. Circular dichroism spectra analysis suggested Pro94 as an essential amino acid for enzyme catalytic activity as it is indispensable for optimum protein folding in P. indicus Grx-coupled ArsC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aaltonen EK, Silow M (2008) Trans-membrane topology of the Acr3 family arsenite transporter from Bacillus subtilis. Biochim Biophys Acta 1778:963–973

    Article  CAS  PubMed  Google Scholar 

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137

    Article  CAS  PubMed  Google Scholar 

  • Achour-Rokbani A, Cordi A, Poupin P, Bauda P, Billard P (2010) Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl Environ Microbiol 76:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Schumann P, Das SK (2013) Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch Microbiol 195:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Schumann P, Das SK (2015) List of new names and new combinations previously effectively, but not validly, published—validation list no. 150. Int J Syst Evol Microbiol 63:797–798

    Google Scholar 

  • Biebl H, Pukall R, Lunsdorf H, Schulz S, Allgaier M, Tindall BJ, Wagner-Dobler I (2007) Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P, Kovács AL, Böddi B, Márialigeti K (2003) Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing Reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53:555–561

    Article  CAS  PubMed  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciria R, Abreu-Goodger C, Morett E, Merino E (2004) GeConT: gene context analysis. Bioinformatics 20:2307–2308

    Article  CAS  PubMed  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    CAS  PubMed  Google Scholar 

  • Gladysheva TB, Oden KL, Rosen BP (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–7293

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  PubMed  Google Scholar 

  • Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Haile JD, Kennelly PJ (2003) An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J Bacteriol 185:6780–6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Krumholz LR (2007) Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J Bacteriol 189:3705–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Gladysheva TB, Lee L, Rosen BP (1995) Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid R773. Biochemistry 34:13472–13476

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:5363–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour NM, Sawhney M, Tamang DG, Vogl C, Saier MH Jr (2007) The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J 274:612–629

    Article  CAS  PubMed  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341

    Article  CAS  PubMed  Google Scholar 

  • Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215

    Article  PubMed  PubMed Central  Google Scholar 

  • Poklar N, Lah J, Salobir M, Macˇek P, Vesnaver G (1997) pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence. Biochemistry 36:14345–14352

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829

    CAS  PubMed  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19

    Article  CAS  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jeon B, Sahin O, Zhang Q (2009) Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 75:5064–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Chemistry, Indian Institute of Technology, Bhubaneswar, for the CD spectroscopic analysis. This work was supported in part by the funding received from Department of Biotechnology, Government of India (D.O. No. BT/PR9712/NBD/52/91/2007) to SKD. The author SB acknowledges the Council of Scientific and Industrial Research, Government of India, for providing the research fellowship. We like to thank Dr. BK Mohanty (University of Georgia, USA) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, S., Das, S.K. Functional analysis of ars gene cluster of Pannonibacter indicus strain HT23T (DSM 23407T) and identification of a proline residue essential for arsenate reductase activity. Appl Microbiol Biotechnol 100, 3235–3244 (2016). https://doi.org/10.1007/s00253-016-7390-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7390-2

Keywords

Navigation