Skip to main content
Log in

Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was undertaken to assess the antifungal performance of three different Lactobacillus species. Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species. However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbeitsgemeinschaft Getreideforschung e.V. (1994) Standard-Methoden für Getreide, Mehl und Brot. Verlag Moritz Schäfer Detmold, Ger. vol. 7:

  • Arendt EK, Dal Bello F, Ryan LAM (2009) Increasing the shelf life of bakery and patisserie products by using the antifungal Lactobacillus amylovorus DSM 19280. WO/2009/14:http://patentscope.wipo.int/search/en/WO2009141427.

  • Axel C, Roecker B, Brosnan B, Zannini E, Furey A, Coffey A, Arendt EK (2015) Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol 47:36–44. doi:10.1016/j.fm.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  • Aziz NH, Farag SE, Mousa LAA, Abo-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

    CAS  PubMed  Google Scholar 

  • Belz MCE, Mairinger R, Zannini E, Ryan LAM, Cashman KD, Arendt EK (2012) The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Appl Microbiol Biotechnol 96:493–501. doi:10.1007/s00253-012-4052-x

    Article  CAS  PubMed  Google Scholar 

  • Black BA, Zannini E, Curtis JM, Gänzle MG (2013) Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 79:1866–73. doi:10.1128/AEM.03784-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broberg A, Jacobsson K, Ström K, Schnürer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73:5547–5552. doi:10.1128/aem.02939-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosnan B, Coffey A, Arendt EK, Furey A (2014) The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures. Talanta 129:364–373. doi:10.1016/j.talanta.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  • Coda R, Cassone A, Rizzello CG, Nionelli L, Cardinali G, Gobbetti M (2011) Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread. Appl Environ Microbiol 77:3484–92. doi:10.1128/AEM.02669-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García HS (2014) Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol 173:30–5. doi:10.1016/j.ijfoodmicro.2013.12.016

    Article  PubMed  Google Scholar 

  • Crowley S, Mahony J, van Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 33:93–109. doi:10.1016/j.tifs.2013.07.004

    Article  CAS  Google Scholar 

  • Curiel JA, Rodríguez H, Landete JM, de las Rivas B, Muñoz R (2010) Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem 120:225–229. doi:10.1016/j.foodchem.2009.10.012

    Article  CAS  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK, Strom K, Sjogren J, Schnurer J (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318. doi:10.1016/j.jcs.2006.09.004

    Article  CAS  Google Scholar 

  • Dallagnol AM, Pescuma M, De Valdez GF, Rollán G (2013) Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Appl Microbiol Biotechnol 97:3129–40. doi:10.1007/s00253-012-4520-3

    Article  CAS  PubMed  Google Scholar 

  • Dallagnol AM, Pescuma M, Rollán G, Torino MI, de Valdez GF (2015) Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread. Appl Microbiol Biotechnol 99:3839–3849. doi:10.1007/s00253-015-6473-9

    Article  CAS  PubMed  Google Scholar 

  • Deacon J (2005) Chapter 6 Fungal nutrition: the carbon and energy sources of fungi. In: Fungal Biology, 4th edn. Blackwell Publishing Ltd, Malden, USA

  • EFSA (2012) Panel on Biological Hazards (BIOHAZ); Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA Journal;10(12)3020 1–84. doi:10.2903/j.efsa.2012.3020

  • Gänzle MG (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10. doi:10.1016/j.fm.2013.04.007

    Article  PubMed  Google Scholar 

  • Gerez CL, Torino MI, Rollán G, Font de Valdez G (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20:144–148. doi:10.1016/j.foodcont.2008.03.005

    Article  CAS  Google Scholar 

  • Li L, Shewry PR, Ward JL (2008) Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9732–9. doi:10.1021/jf801069s

    Article  CAS  PubMed  Google Scholar 

  • Lind H, Jonsson H, Schnürer J (2005) Antifungal effect of dairy propionibacteria—contribution of organic acids. Int J Food Microbiol 98:157–165. doi:10.1016/j.ijfoodmicro.2004.05.020

    Article  CAS  PubMed  Google Scholar 

  • Lynch KM, Pawlowska AM, Brosnan B, Coffey A, Zannini E, Furey A, McSweeney PLH, Waters DM, Arendt EK (2014) Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int Dairy J 34:167–173. doi:10.1016/j.idairyj.2013.07.017

    Article  CAS  Google Scholar 

  • Mauch A, Dal Bello F, Coffey A, Arendt EK (2010) The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141:116–21. doi:10.1016/j.ijfoodmicro.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  • Meroth CB, Walter J, Hertel C, Brandt J, Hammes WP, Brandt MJ (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482. doi:10.1128/aem.69.1.475-482.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miescher Schwenninger S, Lacroix C, Truttmann S, Jans C, Spörndli C, Bigler L, Meile L (2008) Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J Food Prot 71:2481–2487

    Google Scholar 

  • Mu W, Yu S, Zhu L, Zhang T, Jiang B (2012) Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol 95:1155–63. doi:10.1007/s00253-012-4269-8

    Article  CAS  PubMed  Google Scholar 

  • Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci 76:M305–311. doi:10.1111/j.1750-3841.2011.02257.x

    Article  CAS  PubMed  Google Scholar 

  • Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A (1999) New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86:29–35

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PM, Brosnan B, Furey A, Coffey A, Zannini E, Arendt EK (2015) Lactic acid bacteria bioprotection applied to the malting process. Part I: strain characterization and identification of antifungal compounds. Food Control 51:433–443. doi:10.1016/j.foodcont.2014.07.004

    Article  CAS  Google Scholar 

  • Pawlowska AM, Zannini E, Coffey A, Arendt EK (2012) “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv Food Nutr Res 66:217–238. doi:10.1016/b978-0-12-394597-6.00005-7

    Article  CAS  PubMed  Google Scholar 

  • Ryan LAM, Dal Bello F, Arendt EK (2008) The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol 125:274–278. doi:10.1016/j.ijfoodmicro.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  • Ryan LAM, Dal Bello F, Czerny M, Koehler P, Arendt EK (2009) Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography–mass spectrometry. J Agric Food Chem 57:1060–4. doi:10.1021/jf802578e

    Article  CAS  PubMed  Google Scholar 

  • Ryan LAM, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146:276–283. doi:10.1016/j.ijfoodmicro.2011.02.036

    Article  PubMed  Google Scholar 

  • Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P, Järvinen A, Bowyer P, Tjäderhane L, Rautemaa R (2014) 2-Hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 57:214–21. doi:10.1111/myc.12145

    Article  CAS  PubMed  Google Scholar 

  • Sjögren J, Magnusson J, Broberg A, Schnürer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69:7554–7557. doi:10.1128/AEM.69.12.7554

    Article  PubMed Central  PubMed  Google Scholar 

  • Svensson L, Sekwati-Monang B, Lutz DL, Schieber A, Gänzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–20. doi:10.1021/jf101504v

    Article  CAS  PubMed  Google Scholar 

  • Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol Lett 233:289–95. doi:10.1016/j.femsle.2004.02.020

    Article  CAS  PubMed  Google Scholar 

  • Varsha KK, Priya S, Devendra L, Nampoothiri KM (2014) Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Appl Biochem Biotechnol 172:3402–13. doi:10.1007/s12010-014-0779-4

    Article  CAS  PubMed  Google Scholar 

  • Waters DM, Parlet C, Moroni A, Arendt EK (2012) Identification of the fungal microflora of coffee beans from different origins and evaluation of different decontamination concepts. 24th Int. Conf. Coffee Sci. ASIC Costa Rica 24th. pp 145–152

  • Wehrle K, Crowe N, van Boeijen I, Arendt EK (1999) Screening methods for the proteolytic breakdown of gluten by lactic acid bacteria and enzyme preparations. Eur Food Res Technol 209:428–433. doi:10.1007/s002170050521

    Article  CAS  Google Scholar 

  • Wolter A, Hager AS, Zannini E, Czerny M, Arendt EK (2014) Impact of sourdough fermented with Lactobacillus plantarum FST 1.7 on baking and sensory properties of gluten-free breads. Eur Food Res Technol 239:1–12. doi:10.1007/s00217-014-2184-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for Claudia Axel was received through a Science Foundation Ireland scholarship through a research program no. 11/RFP.1/EOB/3204. This research was also partly funded by Irish Department of Agriculture Food Institutional Research Measure Ireland. The authors would also like to thank Bettina Röcker and Marcus Schmidt for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axel, C., Brosnan, B., Zannini, E. et al. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl Microbiol Biotechnol 100, 1701–1711 (2016). https://doi.org/10.1007/s00253-015-7051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7051-x

Keywords

Navigation