Skip to main content
Log in

Survival kit of Saccharomyces cerevisiae for anhydrobiosis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast cells are well adapted to interfacial habitats, such as the surfaces of soil or plants, where they can resist frequent fluctuations between wet and dry conditions. Saccharomyces cerevisiae is recognized as an anhydrobiotic organism, and it has been the subject of numerous studies that aimed to elucidate this ability. Extensive data have been obtained from these studies based on a wide range of experimental approaches, which have added significantly to our understanding of the cellular bases and mechanisms of resistance to desiccation. The aim of this review is to provide an integrated view of these mechanisms in yeast and to describe the survival kit of S. cerevisiae for anhydrobiosis. This kit comprises constitutive and inducible mechanisms that prevent cell damage during dehydration and rehydration. This review also aims to characterize clearly the phenomenon of anhydrobiosis itself based on detailed descriptions of the causes and effects of the constraints imposed on cells by desiccation. These constraints mainly lead to mechanical, structural, and oxidative damage to cell components. Considerations of these constraints and the possible utilization of components of the survival kit could help to improve the survival of sensitive cells of interest during desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111:1–14

    PubMed  Google Scholar 

  • Babazadeh R, Adiels CB, Smedh M, Petelenz-Kurdziel E, Goksor M, Hohmann S (2013) Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects. PLoS One 8(11):e80901

    PubMed  PubMed Central  Google Scholar 

  • Bailly C, Leymarie J, Lehner A, Rousseau S, Côme D, Corbineau F (2004) Catalase activity and expression in developing sunflower seeds as related to drying. J Exp Bot 55(396):475–483

    PubMed  CAS  Google Scholar 

  • Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108(1):74–108

    PubMed  CAS  Google Scholar 

  • Beker M, Blumbergs J, Ventina E, Rapoport A (1984) Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 19(5):347–352

    Google Scholar 

  • Beker MJ, Rapoport AI (1987) Conservation of yeasts by dehydration biotechnology methods. Springer, pp 127-171

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276(26):24261–24267

    PubMed  CAS  Google Scholar 

  • Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57(1–2):34–42

    PubMed  CAS  Google Scholar 

  • Beney L, Linares E, Ferret E, Gervais P (1998) Influence of the shape of phospholipid vesicles on the measurement of their size by photon correlation spectroscopy. Eur Biophys J 27(6):567–574

    PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    PubMed  CAS  Google Scholar 

  • Billi D, Wright DJ, Helm RF, Prickett T, Potts M, Crowe JH (2000) Engineering desiccation tolerance in Escherichia coli. Appl Environ Microbiol 66(4):1680–1684

    PubMed  CAS  PubMed Central  Google Scholar 

  • Biryuzova VI, Rapoport AI (1978) Cryofractographic studies of yeast cell structures in anabiosis. Microbiology 47(2):245–251

    Google Scholar 

  • Blagoeva J, Stoev G, Venkov P (1991) Glucan structure in a fragile mutant of Saccharomyces cerevisiae. Yeast 7(5):455–461. doi:10.1002/yea.320070504

    PubMed  CAS  Google Scholar 

  • Bottema CD, McLean-Bowen CA, Parks LW (1983) Role of sterol structure in the thermotropic behavior of plasma membranes of Saccharomyces cerevisiae. Biochim Biophys Acta 734(2):235–248

    CAS  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28(8):799–808. doi:10.1002/bies.20441

    PubMed  Google Scholar 

  • Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2007) Water clustering and percolation in low hydration DNA shells. J Phys Chem B 111(12):3258–3266

    PubMed  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40(4):803–846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calahan D, Dunham M, DeSevo C, Koshland DE (2011) Genetic analysis of desiccation tolerance in Saccharomyces cerevisiae. Genetics 189(2):507–519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry (Mosc) 28(9):3916–3922

    CAS  Google Scholar 

  • Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157(1):1–11

    PubMed  Google Scholar 

  • Cerrutti P, de Huergo MS, Galvagno M, Schebor C, del Pilar Buera M (2000) Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Appl Microbiol Biotechnol 54(4):575–580

    PubMed  CAS  Google Scholar 

  • Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci U S A 102(13):4753–4758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clegg JS, Seitz P, Seitz W, Hazlewood CF (1982) Cellular responses to extreme water loss: the water-replacement hypothesis. Cryobiology 19(3):306–316

    PubMed  CAS  Google Scholar 

  • Cooper GM, Hausman RE (2000) The cell. Sinauer Associates Sunderland

  • Costa V, Reis E, Quintanilha A, Moradasferreira P (1993) Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300(2):608–614

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223(4637):701–703

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Hoekstra FA (1989) Phase transitions and permeability changes in dry membranes during rehydration. J Bioenerg Biomembr 21(1):77–91

    PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54(1):579–599

    PubMed  CAS  Google Scholar 

  • Crowe JH, Panek AD, Crowe LM, Panek A, De Araujo PS (1991) Trehalose transport in yeast cells. Biochem Int 24(4):721–730

    PubMed  CAS  Google Scholar 

  • de Jesus Pereira E, Panek AD, Eleutherio ECA (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 8(2):120

    PubMed Central  Google Scholar 

  • DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371

    Google Scholar 

  • Despa F (2006) Biological water. Ann N Y Acad Sci 1066(1):1–11

    Google Scholar 

  • Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta 1808(6):1520–1528

    PubMed  CAS  Google Scholar 

  • Dupont S, Beney L, Ritt JF, Lherminier J, Gervais P (2010) Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim Biophys Acta 1798(5):975–985

    PubMed  CAS  Google Scholar 

  • Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66(9):2961–2968

    PubMed  CAS  Google Scholar 

  • Eggers DK, Valentine JS (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10(2):250–261

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eleutherio EC, de Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156(3):263–266

    PubMed  CAS  Google Scholar 

  • Espindola AS, Gomes DS, Panek AD, Eleutherio ECA (2003) The role of glutathione in yeast dehydration tolerance. Cryobiology 47(3):236–241

    CAS  Google Scholar 

  • Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fernández Murga ML, Bernik D, Font de Valdez G, Disalvo AE (1999) Permeability and stability properties of membranes formed by lipids extracted from Lactobacillus acidophilus grown at different temperatures. Arch Biochem Biophys 364(1):115–121

    PubMed  Google Scholar 

  • Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J 17(19):5606–5614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fraikin GY, Strakhovskaya M, Rubin A (1996) The role of membrane-bound porphyrin-type compound as endogenous sensitizer in photodynamic damage to yeast plasma membranes. J Photochem Photobiol B 34(2):129–135

    PubMed  CAS  Google Scholar 

  • França M, Panek A, Eleutherio E (2007) Oxidative stress and its effects during dehydration. Comp Biochem Phys A 146(4):621–631

    Google Scholar 

  • França MB, Panek AD, Eleutherio EC (2005) The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaperones 10(3):167–170

    PubMed  PubMed Central  Google Scholar 

  • Fuller W, Forsyth T, Mahendrasingam A (2004) Water–DNA interactions as studied by X-ray and neutron fibre diffraction. Philos Trans R Soc Lond B Biol Sci 359(1448):1237–1248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gadd G, Chalmers K, Reed R (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48(1):249–254

    CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674

    PubMed  CAS  Google Scholar 

  • Garner MM, Burg MB (1994) Macromolecular crowding and confinement in cells exposed to hypertonicity. Am J Physiol Cell Physiol 266(4):C877–C892

    CAS  Google Scholar 

  • Garre E, Raginel F, Palacios A, Julien A, Matallana E (2010) Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts. Int J Food Microbiol 136(3):295–303

    PubMed  CAS  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69(19):3175–3186. doi:10.1007/s00018-012-1088-0

    PubMed  CAS  Google Scholar 

  • Gervais P, Beney L (2001) Osmotic mass transfer in the yeast Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand) 47(5):831–839

    CAS  Google Scholar 

  • Golovina E, Golovin A, Hoekstra F, Faller R (2010) Water replacement hypothesis in atomic details: effect of trehalose on the structure of single dehydrated POPC bilayers. Langmuir 26(13):11118–11126

    PubMed  CAS  Google Scholar 

  • Golovina EA, Golovin AV, Hoekstra FA, Faller R (2009) Water replacement hypothesis in atomic detail—factors determining the structure of dehydrated bilayer stacks. Biophys J 97(2):490–499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E (2010) Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Factories 9(9):10.1186

    Google Scholar 

  • Goyal K, Walton L, Tunnacliffe A (2005a) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005b) Molecular anhydrobiology: identifying molecules implicated in invertebrate anhydrobiosis. Integr Comp Biol 45(5):702–709

    PubMed  CAS  Google Scholar 

  • Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp70 family proteins. Process Biochem 43(10):1138–1141

    CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44(2):327–340

    CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S–724S

    PubMed  CAS  Google Scholar 

  • Hays LM, Crowe JH, Wolkers W, Rudenko S (2001) Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 42(2):88–102

    PubMed  CAS  Google Scholar 

  • Herdeiro R, Pereira M, Panek A, Eleutherio E (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760(3):340–346

    PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    PubMed  CAS  PubMed Central  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63(8):2971–2976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Israelachvili JN (1977) Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta 469(2):221–225

    PubMed  CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16):1511–1527

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53(379):2401–2410

    PubMed  CAS  Google Scholar 

  • Jørgensen K, Mouritsen OG (1995) Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J 69(3):942–954

    PubMed  PubMed Central  Google Scholar 

  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982

    PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256

    PubMed  CAS  Google Scholar 

  • Krallish I, Jeppsson H, Rapoport A, Hahn-Hägerdal B (1997) Effect of xylitol and trehalose on dry resistance of yeasts. Appl Microbiol Biotechnol 47(4):447–451

    PubMed  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13(3):655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laroche C, Beney L, Marechal P, Gervais P (2001) The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl Microbiol Biotechnol 56(1–2):249–254

    PubMed  CAS  Google Scholar 

  • Lavi A, Weitman H, Holmes RT, Smith KM, Ehrenberg B (2002) The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency. Biophys J 82(4):2101–2110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leckband D, Helm C, Israelachvili J (1993) Role of calcium in the adhesion and fusion of bilayers. Biochemistry (Mosc) 32(4):1127–1140

    CAS  Google Scholar 

  • Lee S, Sielaff B, Lee J, Tsai FT (2010) CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc Natl Acad Sci U S A 107(18):8135–8140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lemetais G, Dupont S, Beney L, Gervais P (2012) Air-drying kinetics affect yeast membrane organization and survival. Appl Microbiol Biotechnol 96(2):471–480

    PubMed  CAS  Google Scholar 

  • Leprince O, Atherton NM, Deltour R, Hendry GA (1994) The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. (an electron paramagnetic resonance study). Plant Physiol 104(4):1333–1339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leprince O, Harren FJ, Buitink J, Alberda M, Hoekstra FA (2000) Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol 122(2):597–608

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leslie SB, Teter SA, Crowe LM, Crowe JH (1994) Trehalose lowers membrane phase transitions in dry yeast cells. Biochim Biophys Acta 1192(1):7–13

    PubMed  CAS  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180(15):3735–3740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271(21):12275–12280

    PubMed  CAS  Google Scholar 

  • López-Martínez G, Pietrafesa R, Romano P, Cordero-Otero R, Capece A (2013) Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress. Yeast 30(8):319–330

    PubMed  Google Scholar 

  • López-Martínez G, Rodríguez-Porrata B, Margalef-Català M, Cordero-Otero R (2012) The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS One 7(3):e33324

    PubMed  PubMed Central  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    PubMed  CAS  Google Scholar 

  • Mager WH, Siderius M (2002) Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2(3):251–257

    PubMed  CAS  Google Scholar 

  • Marechal PA, de Maranon IM, Molin P, Gervais P (1995) Yeast cell responses to water potential variations. Int J Food Microbiol 28(2):277–287

    PubMed  CAS  Google Scholar 

  • Matsumoto R, Rakwal R, Agrawal GK, Jung Y-H, Jwa N-S, Yonekura M, Iwahashi H, Akama K (2006) Search for novel stress-responsive protein components using a yeast mutant lacking two cytosolic Hsp70 genes, SSA1 and SSA2. Mol Cells 21(3):381–388

    PubMed  CAS  Google Scholar 

  • Miermont A, Waharte F, Hu S, McClean MN, Bottani S, Leon S, Hersen P (2013) Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc Natl Acad Sci U S A 110(14):5725–5730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morris G, Winters L, Coulson G, Clarke K (1986) Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J Gen Microbiol 132(7):2023–2034

    PubMed  CAS  Google Scholar 

  • Novichkova A, Rapoport A (1983) Intracellular pool of free amino acids in dehydrated yeast organisms. Mikrobiologiia 53(1):5–9

    Google Scholar 

  • Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39(8):3181–3209

    PubMed  CAS  Google Scholar 

  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775–818

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paciaroni A, Cinelli S, Cornicchi E, Francesco AD, Onori G (2005) Fast fluctuations in protein powders: the role of hydration. Chem Phys Lett 410(4):400–403

    CAS  Google Scholar 

  • Persson E, Halle B (2008) Cell water dynamics on multiple time scales. Proc Natl Acad Sci U S A 105(17):6266–6271

    PubMed  CAS  PubMed Central  Google Scholar 

  • Piette J (1991) New trends in photobiology: biological consequences associated with DNA oxidation mediated by singlet oxygen. J Photochem Photobiol B 11(3):241–260

    PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Jn A (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249–17255

    PubMed  CAS  Google Scholar 

  • Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65(2):661–671

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rapoport A, Khroustalyova G, Crowe L, Crowe J (2009) Anhydrobiosis in yeast: stabilization by exogenous lactose. Microbiology 78(5):624–629

    CAS  Google Scholar 

  • Rapoport A, Khrustaleva G, Chamanis G, Beker M (1995) Yeast anhydrobiosis: permeability of the plasma membrane. Microbiology 64(2):229–232

    Google Scholar 

  • Rapoport A, Puzyrevskaya O, Saubenova M (1988) Polyols and resistance of yeasts to dehydration. Microbiology 57(2):269–271

    Google Scholar 

  • Ratnakumar S, Hesketh A, Gkargkas K, Wilson M, Rash BM, Hayes A, Tunnacliffe A, Oliver SG (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol BioSyst 7(1):139–149

    PubMed  CAS  Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6(6):902–913

    PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275(12):8290–8300

    PubMed  CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19(8):5474–5485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reyes JL, Rodrigo MJ, Colmenero Flores JM, Gil JV, Garay Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28(6):709–718

    CAS  Google Scholar 

  • Rodriguez-Porrata B, Carmona-Gutierrez D, Reisenbichler A, Bauer M, Lopez G, Escote X, Mas A, Madeo F, Cordero-Otero R (2012) Sip18 hydrophilin prevents yeast cell death during desiccation stress. J Appl Microbiol 112(3):512–525

    PubMed  CAS  Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24(8):1537–1545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rozenfelde L, Rapoport A (2014) Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation? Antonie Van Leeuwenhoek 106(2):211–217

    PubMed  CAS  Google Scholar 

  • Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463(2):267–278

    PubMed  CAS  Google Scholar 

  • Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39(1):80–87

    PubMed  CAS  Google Scholar 

  • Schaber J, Adrover MÀ, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksör M, Peter M, Hohmann S (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39(11):1547–1556

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146(4):741–754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shea J-E, Brooks CL (2001) From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52(1):499–535

    PubMed  CAS  Google Scholar 

  • Shea J-E, Onuchic JN, Brooks CL (2002) Probing the folding free energy landscape of the src-SH3 protein domain. Proc Natl Acad Sci U S A 99(25):16064–16068

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shechter E, Rossignol B (2000) Biochimie et biophysique des membranes: aspects structuraux et fonctionnels. Dunod

  • Simonin H, Beney L, Gervais P (2007) Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death. Biochim Biophys Acta 1768(6):1600–1610

    PubMed  CAS  Google Scholar 

  • Singh J, Kumar D, Ramakrishnan N, Singhal V, Jervis J, Garst JF, Slaughter SM, DeSantis AM, Potts M, Helm RF (2005) Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration. Appl Environ Microbiol 71(12):8752–8763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slaninova I, Sestak S, Svoboda A, Farkas V (2000) Cell wall and cytoskeleton reorganization as the response to hyperosmotic shock in Saccharomyces cerevisiae. Arch Microbiol 173(4):245–252

    PubMed  CAS  Google Scholar 

  • Sleigh S, Seavers P, Wilkinson A, Ladbury J, Tame J (1999) Crystallographic and calorimetric analysis of peptide binding to OppA protein. J Mol Biol 291(2):393–415

    PubMed  CAS  Google Scholar 

  • Stadtman E, Levine R (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218

    PubMed  CAS  Google Scholar 

  • Steels E, Learmonth R, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140(3):569–576

    PubMed  CAS  Google Scholar 

  • Sun WQ, Leopold AC (1997) Cytoplasmic vitrification and survival of anhydrobiotic organisms. Comp Biochem Phys A 117(3):327–333

    Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136(8):1469–1474

    PubMed  CAS  Google Scholar 

  • Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087–1104

    PubMed  CAS  Google Scholar 

  • Tamas MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472(1):159–165

    PubMed  CAS  Google Scholar 

  • Tanford C (1997) How protein chemists learned about the hydrophobic factor. Protein Sci 6(6):1358–1366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tokumasu F, Jin AJ, Feigenson GW, Dvorak JA (2003) Nanoscopic lipid domain dynamics revealed by atomic force microscopy. Biophys J 84(4):2609–2618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomlin GC, Hamilton GE, Gardner DC, Walmsley RM, Stateva LI, Oliver SG (2000) Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis. Microbiology 146(Pt 9):2133–2146

    PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94(10):791–812

    PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85(5):3074–3083

    PubMed  CAS  PubMed Central  Google Scholar 

  • Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746(3):172–185

    PubMed  CAS  Google Scholar 

  • Ventina EJ, Saulite LA, Rapoport AI, Beker ME (1984) Electron-microscopic study of yeasts in a state of anabiosis and reactivated from this state. Microbiology 53(4):536–541

    Google Scholar 

  • Welch AZ, Gibney PA, Botstein D, Koshland DE (2013) TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 24(2):115–128

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wiseman H (1993) Vitamin D is a membrane antioxidant ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 326(1):285–288

    PubMed  CAS  Google Scholar 

  • Wolkers WF, van Kilsdonk MG, Hoekstra FA (1998) Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim Biophys Acta 1425(1):127–136

    PubMed  CAS  Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240(3):563–582

    Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12(5):1303–1314

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Beney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupont, S., Rapoport, A., Gervais, P. et al. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98, 8821–8834 (2014). https://doi.org/10.1007/s00253-014-6028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6028-5

Keywords

Navigation