Skip to main content

Advertisement

Log in

Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ferulic, p-coumaric, and caffeic acids are phenolic acids present in soil, food, and gut, which have antimicrobial effects. Some Gram (+) bacteria metabolize these phenolic acids into vinyl derivatives due to phenolic acid decarboxylase activity (PAD) involved in the phenolic acid stress response (PASR). In this study, the antimicrobial activity of phenolic acids and their vinyl derivatives was tested on a panel of desirable and undesirable food-borne bacteria, especially Gram (−) species of Salmonella, Enterobacter, Klebsiella, and Pseudomonas, most of them without PAD activity. Native and engineered Escherichia coli strains either expressing or not PAD activity were included. Gram (−) bacteria of the panel were not significantly inhibited by phenolic acids at 3 mM, but were dramatically inhibited by the corresponding vinyl derivatives. On the contrary, Gram (+) bacteria displaying the PASR face the toxicity of phenolic acids by PAD activity and are not inhibited by vinyl phenols. In E. coli, the genes aaeB and marA, encoding efflux pumps for antimicrobial compounds, are upregulated by the addition of p-coumaric acid, but not by its derivative 4-vinyl phenol (p-hydroxystyrene). These results suggest that phenolic acids and their vinyl phenol derivatives produced by PAD (+) species could have a significant impact on undesirable or pathogenic food-borne Gram (−) bacteria in complex microbial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alekshun MN, Levy SB (1999) Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J Bacteriol 181(15):4669–4672

    PubMed  CAS  Google Scholar 

  • Barthelmebs L, Diviès C, Cavin J-F (2000a) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol 66(8):3368–3375

    Article  PubMed  CAS  Google Scholar 

  • Barthelmebs L, Lecomte B, Diviès C, Cavin J-F (2000b) Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J Bacteriol 182(23):6724–6731

    Article  PubMed  CAS  Google Scholar 

  • Barthelmebs L, Diviès C, Cavin J-F (2001) Expression in Escherichia coli of native and chimeric phenolic acid decarboxylases with modified enzymatic activities and method for screening recombinant E. coli strains expressing these enzymes. Appl Environ Microbiol 67(3):1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ (2012) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93(2):837–845

    Article  PubMed  CAS  Google Scholar 

  • Beltran JL, Sanli N, Fonrodona G, Barron D, Ozkan G, Barbosa J (2003) Spectrophotometric, potentiometric and chromatographic pK(a) values of polyphenolic acids in water and acetonitrile-water media. Anal Chim Acta 484(2):253–264

    Article  CAS  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69(1):155–194

    Article  PubMed  CAS  Google Scholar 

  • Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94:167–174

    Article  PubMed  CAS  Google Scholar 

  • Campos FM, Couto JA, Figueiredo AR, Toth IV, Rangel AO, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135(2):144–151

    Article  PubMed  CAS  Google Scholar 

  • Cavin J-F, Barthelmebs L, Diviès C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63(5):1939–1944

    PubMed  CAS  Google Scholar 

  • Cueva C, Moreno-Arribas MV, Martin-Alvarez PJ, Bills G, Vicente MF, Basilio A, Rivas CL, Requena T, Rodriguez JM, Bartolome B (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 161(5):372–382

    Article  PubMed  CAS  Google Scholar 

  • Degrassi G, Polverino De Laureto P, Bruschi CV (1995) Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus. Appl Environ Microbiol 61(1):326–332

    PubMed  CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16(13):6127–6145

    Article  PubMed  CAS  Google Scholar 

  • Duy NV, Mader U, Tran NP, Cavin J-F, le Tam T, Albrecht D, Hecker M, Antelmann H (2007) The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. PROTEOMICS 7(5):698–710

    Article  PubMed  Google Scholar 

  • Gibson TJ (1984) Studies on the Epstein-Barr virus genome. Cambridge University, Ph. D. thesis

    Google Scholar 

  • Gu W, Li X, Huang J, Duan Y, Meng Z, Zhang KQ, Yang J (2011a) Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Appl Microbiol Biotechnol 89(6):1797–1805

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Yang J, Lou Z, Liang L, Sun Y, Huang J, Li X, Cao Y, Meng Z, Zhang KQ (2011b) Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4. PLoS One 6(1):e16262

    Article  PubMed  CAS  Google Scholar 

  • Gury J, Barthelmebs L, Tran NP, Diviès C, Cavin J-F (2004) Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl Environ Microbiol 70(4):2146–2153

    Article  PubMed  CAS  Google Scholar 

  • Gury J, Seraut H, Tran NP, Barthelmebs L, Weidmann S, Gervais P, Cavin J-F (2009) Inactivation of PadR, the repressor of the phenolic acid stress response, by molecular interaction with Usp1, a universal stress protein from Lactobacillus plantarum, in Escherichia coli. Appl Environ Microbiol 75(16):5273–5283

    Article  PubMed  CAS  Google Scholar 

  • Hachler H, Cohen SP, Levy SB (1991) marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol 173(17):5532–5538

    PubMed  CAS  Google Scholar 

  • Hashidoko Y, Tanaka T, Tahara S (2001) Induction of 4-hydroxycinnamate decarboxylase in Klebsiella oxytoca cells exposed to substrates and non-substrate 4-hydroxycinnamate analogs. Biosci Biotechnol Biochem 65(12):2604–2612

    Article  PubMed  CAS  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57(4):1213–1217

    PubMed  CAS  Google Scholar 

  • Hejnova J, Dobrindt U, Nemcova R, Rusniok C, Bomba A, Frangeul L, Hacker J, Glaser P, Sebo P, Buchrieser C (2005) Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31). Microbiology 151(Pt 2):385–398

    Article  PubMed  CAS  Google Scholar 

  • Licandro-Seraut H, Gury J, Tran NP, Barthelmebs L, Cavin J-F (2008) Kinetics and intensity of the expression of genes involved in the stress response tightly induced by phenolic acids in Lactobacillus plantarum. J Mol Microbiol Biotechnol 14(1–3):41–47

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65(11):4837–4847

    PubMed  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbüchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61(5–6):528–535

    PubMed  CAS  Google Scholar 

  • Ravirala RS, Barabote RD, Wheeler DM, Reverchon S, Tatum O, Malouf J, Liu H, Pritchard L, Hedley PE, Birch PR, Toth IK, Payton P, San Francisco MJ (2007) Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Mol Plant Microbe Interact 20(3):313–320

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Curiel JA, Landete JM, de las Rivas B, Lopez de Felipe F, Gomez-Cordoves C, Mancheno JM, Munoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132(2–3):79–90

    Article  PubMed  CAS  Google Scholar 

  • Rokeach LA, Haselby JA, Hoch SO (1988) Molecular cloning of a cDNA encoding the human Sm-D autoantigen. Proc Natl Acad Sci USA 85(13):4832–4836

    Article  PubMed  CAS  Google Scholar 

  • Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 152:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    PubMed  CAS  Google Scholar 

  • Silva I, Campos FM, Hogg T, Couto JA (2011) Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria. J Appl Microbiol 111(2):360–370

    Article  PubMed  CAS  Google Scholar 

  • Tran NP, Gury J, Dartois V, Nguyen TK, Seraut H, Barthelmebs L, Gervais P, Cavin J-F (2008) Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis. J Bacteriol 190(9):3213–3224

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama H, Hashidoko Y, Kuriyama Y, Tahara S (2008) Identification of the 4-hydroxycinnamate decarboxylase (PAD) gene of Klebsiella oxytoca. Biosci Biotechnol Biochem 72(1):116–123

    Article  PubMed  CAS  Google Scholar 

  • Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 186(21):7196–7204

    Article  PubMed  Google Scholar 

  • Verhoef S, Wierckx N, Westerhof RG, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75(4):931–936

    Article  PubMed  CAS  Google Scholar 

  • Wells JE, Berry ED, Varel VH (2005) Effects of common forage phenolic acids on Escherichia coli O157:H7 viability in bovine feces. Appl Environ Microbiol 71(12):7974–7979

    Article  PubMed  CAS  Google Scholar 

  • Yasufuku T, Shigemura K, Shirakawa T, Matsumoto M, Nakano Y, Tanaka K, Arakawa S, Kinoshita S, Kawabata M, Fujisawa M (2011) Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli Strains clinically isolated from urinary tract infection patients. J Clin Microbiol 49(1):189–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the “Conseil Régional de Bourgogne” with a PARI project, and Scientific Council of AgroSup Dijon. We thank Alexandre Bastard and Christine Rojas for their technical contribution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hélène Licandro-Seraut or Jean-François Cavin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licandro-Seraut, H., Roussel, C., Perpetuini, G. et al. Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl Microbiol Biotechnol 97, 7853–7864 (2013). https://doi.org/10.1007/s00253-013-5072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5072-x

Keywords

Navigation