Skip to main content
Log in

Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the post-genome era, it is one challenge to understand the cellular metabolism at the systematic levels. Mathematical modeling of microorganisms and subsequent computer simulation are effective tools for systems biology. In this paper, based on the genome-scale Escherichia coli stoichiometric model iJR904, through the GAMS linear programming package, the in silico maximal succinate yield was estimated to be 1.714 mol/mol glucose. When another two constraints were added, the maximal succinate yield dropped to 1.60 mol/mol glucose. Further analysis substantiated the uniqueness of the flux distribution under such constraints. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experimental data of the three kinds of E. coli, three potential improvement target sites, the glucose phosphotransferase transport system, the pyruvate carboxylase, and the glyoxylate shunt, were identified and selected for the genetic modifications. All the three genetic modified strains showed increased succinate yield. The final strain TUQ19/pQZ6 had a high yield of 1.29 mol succinate/mol glucose and high productivity. The success of the above experiments proved that this in silico optimal succinate production pathway is reasonable and practical. This method may also be used as a general strategy to help enhance the yields of other favorable metabolites in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:1633–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai DM, Zhao XM, Li XG, Xu SM (2004) Strain improvement and metabolic flux analysis in the wild type and a mutant Lactobacillus lactis strain for L(+) lactic acid. Biotechnol Bioeng 88:681–689

    Article  CAS  Google Scholar 

  • Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195

    Article  CAS  Google Scholar 

  • Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73

    Article  CAS  Google Scholar 

  • Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154

    Article  CAS  Google Scholar 

  • Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277:28058–28064

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  • Desvaux M, Guedon E, Petitdemange H (2001) Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology 147:1461–1471

    Article  CAS  Google Scholar 

  • Edwards JS, Ibarra1 RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  CAS  Google Scholar 

  • Erni B (2002) Glucose transport by the bacterial phosphotransferase system (PTS): an interface between energy and signal transduction. In: Winkelmann G (ed) Microbial transport system. Wiley–VCH, Weinheim, pp 115–138

    Google Scholar 

  • Guardia MJ, Gambhir A, Europa AF, Ramkrishna D, Hu WS (2000) Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells. Biotechnol Prog 16:847–853

    Article  CAS  Google Scholar 

  • Gui LZ, Sunnarborg A, Pan B, Laporte DC (1996) Autoregulation of iclR, the gene encoding the repressor of glycoxylate bypass operon. J Bacteriol 178:321–324

    Article  CAS  Google Scholar 

  • Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013

    Article  CAS  Google Scholar 

  • Hong SH, Lee SY (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol Bioeng 74:89–95

    Article  CAS  Google Scholar 

  • Hynne F, Dano S, Sorensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94:121–163

    Article  CAS  Google Scholar 

  • Ingraham JL, Maaloe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer, Sunderland, MA

    Google Scholar 

  • Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M (2004) Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 113:281–294

    Article  CAS  Google Scholar 

  • Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239

    Article  CAS  Google Scholar 

  • Lee SY, Hong SH, Moon SY (2002) In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome Inform Ser Workshop Genome Inform. 13:214–223

    CAS  Google Scholar 

  • Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knock out simulation. Appl Environ Microbiol 12:7880–7887

    Article  Google Scholar 

  • Maeba P, Sanwal BD (1969) Phosphoenolpyruvate carboxylase from Salmonella typhimurium strain LT2. Methods Enzymol 13:283–288

    Article  CAS  Google Scholar 

  • Millard CS, Chao Y, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62:1808–1810

    Article  CAS  Google Scholar 

  • Nielsen J, Villadsen J (1994) Bioreaction engineering principles. Plenum, New York

    Book  Google Scholar 

  • Poteete AR, Fenton AC, Murphy KC (1999) Roles of ruvC and recG in phage λ red-mediated recombination. J Bacteriol 181:5402–5408

    Article  CAS  Google Scholar 

  • Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169

    Article  CAS  Google Scholar 

  • Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54

    Article  Google Scholar 

  • Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    Article  CAS  Google Scholar 

  • Shalel-Levanon S, San KY, Bennett GN (2005) Effect of oxygen on the E. coli ArcA and FNR regulation systems and metabolic responses. Biotech Bioeng 89:556–564

    Article  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  Google Scholar 

  • Stols L, Donnelly M (1997) Production of succinic acid through over-expression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701

    Article  CAS  Google Scholar 

  • van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32:234–252

    Article  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727

    Article  CAS  Google Scholar 

  • Wang QZ, Wu W, Zhao XM (2004) The market analysis for bioconversion of succinic acid and its derivatives. Chem Ind Eng Progress 23:794–798 (in Chinese)

    CAS  Google Scholar 

  • Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 70(2):151–161

    Article  CAS  Google Scholar 

  • Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47:183–194

    Article  CAS  Google Scholar 

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–5526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC-20536040) and the State Key Development Program for Basic Research of China (No. 2003CB716003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Chen, X., Yang, Y. et al. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl Microbiol Biotechnol 73, 887–894 (2006). https://doi.org/10.1007/s00253-006-0535-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0535-y

Keywords

Navigation