Skip to main content

Advertisement

Log in

Industrial bioconversion of renewable resources as an alternative to conventional chemistry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<US $1/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (US $2–4/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anonymous (2000) The DOE ethanol pilot plant—a tool for commercialization

  • Anonymous (2004) Biotechnology in plastics. Biotech Newslett 1. http://www.polymerplace.com/Bio_tech/BIOTECH%20Newsletter-Summer%2004.pdf

  • Babel W, Steinbüchel A (2001) Biopolyesters. Advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Balkcom M, Welt B, Berger K (2002) Notes from the packaging laboratory: polylactic acid—an exciting new packaging material. ABE 339, Institute of Food and Agricultural Sciences, University of Florida. Online publication

    Google Scholar 

  • Baum P, Engelmann J (2001) Angewandte Makromolekulare Chemie. Nachr Chemie 49:3

    Google Scholar 

  • Bayer (2003) Product information baypure. http://www.baypure.de

  • Beer T, Grant T, Morgan G, Lapszewicz J, Anyon P, Edwards J, Nelson P, Watson H, Williams D (2002) Comparison of transport fuels—final report to the Australian Greenhouse Office on the stage 2 study of life-cycle emissions analysis of alternative fuels for heavy vehicles. EV45A/2/F3C, CSIRO/University of Melbourne, Centre for Design at RMIT Parsons Australia Pty Ltd and Southern Cross Institute of Health Research. http://www.greenhouse.gov.au/transport/comparison/

  • Berg C (2001) World ethanol production 2001. http://www.distill.com/world_ethanol_production.htm

  • Blaschek HP (2001) Butanol research. http://www.ilcorn.org/Corn_Products/Butanol/butanol.html

  • Blaschek HP, Annous B, Formanek J, Chen CC (2002) Method of producing butanol using a mutant strain of Clostridium beijernickii. US Patent 6358717 B1

  • BRDTAC (2002a) Roadmap for biomass technologies in the United States. Biomass R&D Technical Advisory Committee. http://www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf

  • BRDTAC (2002b) Vision for bioenergy & biobased products in the United States. Biomass R&D Technical Advisory Committee. http://www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf

  • Brellochs A, Schmolke A, Wolff H (2001) Substitution chemisch-technischer Prozesse durch biotechnische Verfahren am Beispiel ausgewählter Grund- und Feinchemikalien. Forschungsbericht 298 67 411 UBA-FB 000131. Prognos AG. 29867411, 1-203. Umweltbundesamt, Berlin

  • Cargill (2003) Press release: Cargill and Codexis launch research collaboration to develop industrial bioproducts platform. http://www.cargill.com/today/releases/2003/03_05_19codexis.htm

  • Cargill Dow Polymers (2003) Company financials: business segments: industrial, last modified 18-Mar-2003. http://www.cargill.com/finance/industrial.htm

  • CMR (2002) Cargill dow opens natureworks PLA plant. Chemical market reporter

  • Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:65–71

    Article  CAS  Google Scholar 

  • CTD (2003) Cyclodextrine technology development: volume usage projection. http://www.cyclodex.com/history_updates_5.htm

  • Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27

    CAS  Google Scholar 

  • Dupont (2001) Press release: Genencor International and Dupont expand R&D collaboration to make key biobased polymer. http://www1.dupont.com/NASApp/dupontglobal/corp/index.jsp?page=/content/US/en_US/news/product/2001/pn03_12_01.html

  • EU (2003) Directive 2003/30/EC of the European Parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Off J Eur Union 46(L123):42–47

    Google Scholar 

  • Eyring EM, Meuzelaar HLC, Pugmire RJ (2000) Synthesis and testing of diethyl carbonate as a possible diesel fuel additive. In: Huffman GP (Hrsg) Cooperative research in C1 chemistry, consortium for fossil fuel liquefaction science. Annual report on research conducted from May 1, 2000 to April 30, 2001. DOE cooperative agreement no. DE-FC26-99FT40540

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. J Appl Microbiol 63:653–658

    Article  CAS  Google Scholar 

  • Felcht U-H (2003) Press release. Economic Press Conference Frankfurt am Main, DECHEMA Haus, 8 April 2003. http://dechema.de/ueberblick/presse/englisch/felcht_wpk_e.htm

  • FNR (2003) Informationen zum nachwachsenden Rohstoff Zucker. http://www.fnr.de/

  • Gapes JR (2000a) The economics of acetone-butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32

    CAS  PubMed  Google Scholar 

  • Gapes JR (2000b) The history of the acetone-butanol project in Austria. J Mol Microbiol Biotechnol 2:5–8

    CAS  PubMed  Google Scholar 

  • Gröger M, Kretzer EK, Woyke A (2001) Cyclodextrine. Universität Siegen, Siegen. http://www.science-forum.de/download/cyclodex.pdf

    Google Scholar 

  • Hancock RD, Viola R (2001) The use of micro-organisms for l-ascorbic acid production: current status and future perspectives. Appl Microbiol Biotechnol 56:567–576

    Article  CAS  PubMed  Google Scholar 

  • Hestekin J, Snyder S, Davison B (2002) Direct capture of products from biotransformations. 1–13. Oak Ridge, Vision 2020. http://www.chemicalvision2020.org/pdfs/direct_capture.pdf

  • Hiller K, Kehrer P (2000) Erdöl Erdgas Kohle 116:427

    CAS  Google Scholar 

  • Ingram O, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (2002) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Article  Google Scholar 

  • Iogen (2004) Press release from 21 April, 2004: cellulose ethanol is ready to go. http://www.iogen.ca

  • Jahnz U, Schubert M, Vorlop KD (2001) Effective development of a biotechnical process: screening, genetic engineering, and immobilization for the enzymatic conversion of inulin to DFA III on industrial scale. Landbauforsch Volkenrode 51:131–136

    CAS  Google Scholar 

  • Jeanroy A (2000) Ethanol und ETBE: derzeitiger Stand und Aussichten. Zuckerindustrie 125:728–733

    CAS  Google Scholar 

  • de Jesus D, Nghiem NP (2002) Student abstracts: chemistry at ORNL—abstract ethanol production from rice-straw hydrolyzate using Zymomonas mobilis in a continuous Fluidized-Bed Reactor (FBR). http://www.scied.science.doe.gov/scied/abstracts2000/ornlchem.htm

  • Lang S, Trowitzsch-Kienast W (2003) Biotenside. Chemie in der Praxis. Teubner, Wiesbaden

    Google Scholar 

  • Lawford HG, Rousseau JD (2003) Cellulosic fuel ethanol—alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl Biochem Biotechnol 105:457–469

    Article  Google Scholar 

  • Lee SY, Hong SH (2002) Engineering of Escherichia coli central metabolic pathways for the production of succinic acid. Biol Syst Eng 830:30–38

    CAS  Google Scholar 

  • Merck (1998) Pressemitteilung: BASF, Cerestar und Merck legen Grundstein für Gemeinschaftsunternehmen. http://me.merck.de/EMD/UK/UKNEWS.NSF/514d511e92394508c125682a0052a8c8/4b13c1bed076bf29c125682b005f6975? OpenDocument

  • Nguyen QA, Dickow JH, Duff BW, Farmer JD, Glassner DA, Ibsen KN, Ruth MF, Schell DJ, Thompson IB, Tucker MP (1996) NREL/DOE ethanol pilot-plant: current status and capabilities. Bioresour Technol 58:189–196

    Article  CAS  Google Scholar 

  • NRC (2000) Biobased industrial products: priorities for research and commercialisation. National Research Council, Washington. http://books.nap.edu/catalog/5295.html

    Google Scholar 

  • OECD (1998) Biotechnology for clean industrial products and processes. OECD, Paris, p 30

    Google Scholar 

  • PERP (1998) PERP-report: propanediol (1,3-), biotransformation routes to 97S4. Chem Systems, New York. http://www.chemsystems.com/search/docs/prospectus/PERP_Title_Index_92-03.pdf

    Google Scholar 

  • Prusse U, Fox B, Kirchhoff M, Bruske F, Breford J, Vorlop KD (1998) New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem Eng Technol 21:29–33

    Article  Google Scholar 

  • Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27:287–291

    Article  CAS  PubMed  Google Scholar 

  • Rau U, Hammen S, Heckmann R, Wray V, Lang S (2001) Sophorolipids: a source for novel compounds. Ind Crops Prod 13:85–92

    Article  CAS  Google Scholar 

  • Ritter SK (2003) Green reward—presidential honors recognize innovative syntheses, process improvements, and new products that promote pollution prevention. Chem Eng News Sci Technol 81:30–35

    Google Scholar 

  • Rose T, Kunz M (2002) Production of isomalt. In: Prüße U, Vorlop K-D (eds) Practical aspects of encapsulation technologies. Bundesforschungsanstalt für Landwirtschaft. Braunschweig. Landbauforsch Völkenrode Sonderh 241:75–80

    Google Scholar 

  • Rosenberger A, Kaul HP, Senn T, Aufhammer W (2002) Costs of bioethanol production from winter cereals: the effect of growing conditions and crop production intensity levels. Ind Crops Prod 15:91–102

    Article  CAS  Google Scholar 

  • Römpp (1998) Römpp Chemie Lexikon, 10th edn. Falbe J, Regitz M (eds)

  • Schmidt-Bleek F (2000) Das MIPS-Konzept. Droemer/Knaur, München

    Google Scholar 

  • Steinbüchel A (2002) Forschungsschwerpunkt 2001–2002: biosynthesis of polyamides. http://www.uni-muenster.de/Rektorat/Forschungsberichte-2001-2002/fo13da02.htm

  • Südzucker AG (2004) Isomalt—Internet presentation. http://www.isomalt.de

  • TIG (2002) The innovation group—chemical profiles on Internet. http://www.the-innovation-group.com/chemprofile.htm

  • VDI (2004) Ökosprit mit Makel. VDI-Nachrichten 9:11

    Google Scholar 

  • Viola R (2002) Development of a yeast-based single-step process for the manufacture of l-ascorbic acid (vitamin C). http://wwwexternal.scri.sari.ac.uk/SCRI/Web/Site/home/ResearchAreas/Theme2?GenestoProducts/QHN/External/vitaminC.asp

  • Wacker (2002) Cyclodextrine. http://www.wacker.com/internet/noc/Products/PT_Bio/P_Bio_Cy/

  • Wee YJ, Yun JS, Kang KH, Ryu HW (2002) Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Appl Biochem Biotechnol 98:1093–1104

    Article  Google Scholar 

  • Weizsäcker EU von, Lovins AB, Hunter Lovins L (1997) Faktor vier: doppelter Wohlstand—halbierter Verbrauch. Der neue Bericht an den Club of Rome. Droemer/Knaur, München

    Google Scholar 

  • Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295

    Article  CAS  PubMed  Google Scholar 

  • Willke T, Vorlop K-D (2003) Bioverfahrenstechnik. In: Matthies (Hrsg) Jahrbuch Agrartechnik. Landwirtschafts, Münster, pp 207–217

  • Willke T, Welter K, Vorlop KD (2001) Biotechnological production of itaconic acid from sugar. Zuckerindustrie 126:444–447

    CAS  Google Scholar 

  • WVZ (2003) Wirtschaftliche Vereinigung Zucker, Informationen zum Zuckermarkt Stand 3/2003. http://www.zuckerwirtschaft.de

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  • Zvosec R (2003) 3-Hydroxypropionic acid—a new intermediate platform. http://www.nrel.gov/biotech_symposium/docs/abst5-03.doc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Willke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willke, T., Vorlop, KD. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66, 131–142 (2004). https://doi.org/10.1007/s00253-004-1733-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1733-0

Keywords

Navigation