Skip to main content

Advertisement

Log in

The Biased Distribution of Alus in Human Isochores Might Be Driven by Recombination

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Alu retrotransposons do not show a homogeneous distribution over the human genome but have a higher density in GC-rich (H) than in AT-rich (L) isochores. However, since they preferentially insert into the L isochores, the question arises: What is the evolutionary mechanism that shifts the Alu density maximum from L to H isochores? To disclose the role played by each of the potential mechanisms involved in such biased distribution, we carried out a genome-wide analysis of the density of the Alus as a function of their evolutionary age, isochore membership, and intron vs. intergene location. Since Alus depend on the retrotransposase encoded by the LINE1 elements, we also studied the distribution of LINE1 to provide a complete evolutionary scenario. We consecutively check, and discard, the contributions of the Alu/LINE1 competition for retrotransposase, compositional matching pressure, and Alu overrepresentation in introns. In analyzing the role played by unequal recombination, we scan the genome for Alu trimers, a direct product of Alu–Alu recombination. Through computer simulations, we show that such trimers are much more frequent than expected, the observed/expected ratio being higher in L than in H isochores. This result, together with the known higher selective disadvantage of recombination products in H isochores, points to Alu–Alu recombination as the main agent provoking the density shift of Alus toward the GC-rich parts of the genome. Two independent pieces of evidence—the lower evolutionary divergence shown by recently inserted Alu subfamilies and the higher frequency of old stand-alone Alus in L isochores—support such a conclusion. Other evolutionary factors, such as population bottlenecks during primate speciation, may have accelerated the fast accumulation of Alus in GC-rich isochores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • M Babcock A Pavliček E Spiteri CD Kashork I Isohikhes LG Shaffer J Jurka BE Morrow (2003) ArticleTitleShuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution Genome Res 13 2519–2532 Occurrence Handle1:CAS:528:DC%2BD3sXpvVakurw%3D Occurrence Handle14656960

    CAS  PubMed  Google Scholar 

  • MD Baker LR Read BG Beatty P NG (1996) ArticleTitleRequirements for ectopic homologous recombination in mammalian somatic Cells Mol Cell Biol 16 7122–7132 Occurrence Handle1:CAS:528:DyaK28XntVyrtL8%3D Occurrence Handle8943368

    CAS  PubMed  Google Scholar 

  • MA Batzer PL Deininger (2002) ArticleTitleAlu repeats and human genomic diversity Nat Rev Genet 3 1–10

    Google Scholar 

  • P Bernaola-Galván R Román-Roldán JL Oliver (1996) ArticleTitleCompositional segmentation and long-range fractal correlation in DNA sequences Phys Rev E 53 5181–5189

    Google Scholar 

  • G Bernardi B Olofson J Filipski M Zerial J Salinas G Cuny M Meunier-Rotival F Rodier (1985) ArticleTitleThe mosaic genome of warm-blooded vertebrates Science 228 953–958 Occurrence Handle1:CAS:528:DyaL2MXksVyquro%3D Occurrence Handle4001930

    CAS  PubMed  Google Scholar 

  • G Bernardi (2000) ArticleTitleIsochores and the evolutionary genomics of vertebrates Gene 241 3–17 Occurrence Handle10.1016/S0378-1119(99)00485-0 Occurrence Handle1:CAS:528:DyaK1MXotVGksrw%3D Occurrence Handle10607893

    Article  CAS  PubMed  Google Scholar 

  • G Bernardi (2001) ArticleTitleMisunderstandings about isochors Part 1 Gene 276 3–13 Occurrence Handle1:CAS:528:DC%2BD3MXntlKmuro%3D Occurrence Handle11591466

    CAS  PubMed  Google Scholar 

  • JD Boeke (1997) ArticleTitleLINEs and Alus—The polyA connection Nat Genet 16 6–7 Occurrence Handle10.1038/ng0597-6 Occurrence Handle1:CAS:528:DyaK2sXivFKhs7Y%3D Occurrence Handle9140383

    Article  CAS  PubMed  Google Scholar 

  • RJ Britten (1996) ArticleTitleDNA sequence insertion and evolutionary variation in gene regulation Proc Natl Acad Sci USA 93 9374–9377 Occurrence Handle1:CAS:528:DyaK28XlsFeisr4%3D Occurrence Handle8790336

    CAS  PubMed  Google Scholar 

  • JF Brookfield (2001) ArticleTitleSelection on Alu sequences? Curr Biol 11 900–901

    Google Scholar 

  • WM Chu R Ballard BW Carpick BR Williams CW Schmid (1998) ArticleTitlePotential Alu function: Regulation of the activity of double-stranded RNA-activated kinase PKR Mol Cell Biol 18 58–68 Occurrence Handle1:CAS:528:DyaK1cXivFWksQ%3D%3D Occurrence Handle9418853

    CAS  PubMed  Google Scholar 

  • PL Deininger MA Batzer (1999) ArticleTitleAlu repeats and human disease Mol Genet Metab 67 183–193 Occurrence Handle1:CAS:528:DyaK1MXjvFWrtr4%3D Occurrence Handle10381326

    CAS  PubMed  Google Scholar 

  • PL Deininger MA Batzer CA Hutchison MH Edgell (1992) ArticleTitleMaster genes in mammalian repetitive DNA amplification Trends Genet 8 307–311 Occurrence Handle1:CAS:528:DyaK3sXhslSjtg%3D%3D Occurrence Handle1365396

    CAS  PubMed  Google Scholar 

  • PL Deininger TV Moran MA Batzer HH Kazazian SuffixJr (2003) ArticleTitleMobile elements and mammalian genome evolution Curr Opin Genet Dev 13 651–658 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Snsbg%3D Occurrence Handle14638329

    CAS  PubMed  Google Scholar 

  • M Dewannieux C Esnault T Heidmann (2003) ArticleTitleLINE-mediated retrotransposition of marked Alu sequences Nat Genet 35 41–48 Occurrence Handle1:CAS:528:DC%2BD3sXmslemu70%3D Occurrence Handle12897783

    CAS  PubMed  Google Scholar 

  • J Filipski J Salinas F Rodier (1989) ArticleTitleChromosome localization-dependent compositional bias of point mutations in Alu repetitive sequences J Mol Biol 206 563–566 Occurrence Handle1:STN:280:BiaB3snkt1Q%3D Occurrence Handle2716062

    CAS  PubMed  Google Scholar 

  • Z Gu H Wang A Nekrutenko WL Li (2000) ArticleTitleDensities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence Gene 259 81–88 Occurrence Handle1:CAS:528:DC%2BD3MXitV2mtA%3D%3D Occurrence Handle11163965

    CAS  PubMed  Google Scholar 

  • DJ Hedges PA Callinan R Cordaux J Xing E Barnes MA Batzer (2004) ArticleTitleDifferential Alu mobilization and polymorphism among the human and chimpanzee lineages Genome Res 14 1068–1075 Occurrence Handle1:CAS:528:DC%2BD2cXkvFGhtrg%3D Occurrence Handle15173113

    CAS  PubMed  Google Scholar 

  • InstitutionalAuthorNameIHGSC (2001) ArticleTitleInitial sequencing and analysis of the human genome Nature 409 860–921

    Google Scholar 

  • K Jabbari G Bernardi (1998) ArticleTitleCpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families Gene 224 123–127 Occurrence Handle1:CAS:528:DyaK1MXivVersQ%3D%3D Occurrence Handle9931467

    CAS  PubMed  Google Scholar 

  • TH Jukes V Bhushan (1986) ArticleTitleSilent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes J Mol Evol 24 39–44 Occurrence Handle1:CAS:528:DyaL2sXhtFClsbw%3D Occurrence Handle3104617

    CAS  PubMed  Google Scholar 

  • J Jurka (1995) Origin and evolution of Alu repetitive elements RJ Maraia (Eds) Impact of short interspersed elements (SINEs) on the host genome Landes Austin, TX 25–41

    Google Scholar 

  • J Jurka (2000) ArticleTitleRepbase Update, a database and an electronic journal of repetitive elements Trends Genet 16 418–419 Occurrence Handle1:CAS:528:DC%2BD3cXmvFygtr0%3D Occurrence Handle10973072

    CAS  PubMed  Google Scholar 

  • J Jurka M Krnjajic VV Kapitonov JE Stenger O Kohkanyy (2002) ArticleTitleActive Alu elements are passed primarily through paternal germlines Theor Popul Biol 61 519–530 Occurrence Handle12167372

    PubMed  Google Scholar 

  • J Jurka O Kohany A Pavlicek VV Kapitonov MV Jurka (2004) ArticleTitleDuplication, coclustering, and selection of human Alu retrotransposons Proc Natl Acad Sci USA 101 1268–1272 Occurrence Handle1:CAS:528:DC%2BD2cXhtlWjtLw%3D Occurrence Handle14736919

    CAS  PubMed  Google Scholar 

  • E Kolomietz MS Meyn A Pandita JA Squire (2002) ArticleTitleThe role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors Genes Chromosomes Cancer 35 97–112 Occurrence Handle1:CAS:528:DC%2BD38XntVyjt7w%3D Occurrence Handle12203773

    CAS  PubMed  Google Scholar 

  • S Lambert Y Saintigny F Delacote F Amiot B Chaput M Lecomte S Huck P Bertrand BS Lopez (1999) ArticleTitleAnalysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences Mutat Res 433 159–168 Occurrence Handle1:CAS:528:DyaK1MXis1ejt7o%3D Occurrence Handle10343649

    CAS  PubMed  Google Scholar 

  • G Lev-Maor R Sorek N Shomron G Ast (2003) ArticleTitleThe birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons Science 300 1288–1291 Occurrence Handle1:CAS:528:DC%2BD3sXktFGkt7w%3D Occurrence Handle12764196

    CAS  PubMed  Google Scholar 

  • W Li (2001) ArticleTitleDelineating relative homogeneous G + C domains in DNA sequences Gene 276 57–72 Occurrence Handle1:CAS:528:DC%2BD3MXntlKmu74%3D Occurrence Handle11591472

    CAS  PubMed  Google Scholar 

  • KS Lobachev JE Stenger OG Kozyreva J Jurka DA Gordenin MA Resnick (2000) ArticleTitleRelated inverted Alu repeats unstable in yeast are excluded from the human genome EMBO J 19 3822–3833 Occurrence Handle1:CAS:528:DC%2BD3cXmtlegsLk%3D Occurrence Handle10899135

    CAS  PubMed  Google Scholar 

  • JM Martínez Zapater A Marín JL Oliver (1993) ArticleTitleEvolution of base composition in T-DNA genes from Agrobacterium Mol Biol Evol 10 437–448

    Google Scholar 

  • P Medstrand LN Lagemaat Particlevan de DL Mager (2002) ArticleTitleRetroelement distributions in the human genome: variations associated with age and proximity to genes Genome Res 12 1483–1495 Occurrence Handle1:CAS:528:DC%2BD38XotVKgtLo%3D Occurrence Handle12368240

    CAS  PubMed  Google Scholar 

  • AJ Mighell AF Markham PA Robinson (1997) ArticleTitleAlu sequences FEES Lett 417 1–5 Occurrence Handle1:CAS:528:DyaK2sXntVOhs7c%3D

    CAS  Google Scholar 

  • M Nei S Kumar (2000) Molecular evolution and phylogenetics Oxford University Press Oxford

    Google Scholar 

  • JL Oliver A Marín JM Martínez Zapater (1990) ArticleTitleChloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage Nucleic Acids Res 18 65–73 Occurrence Handle1:CAS:528:DyaK3cXhtFensrY%3D Occurrence Handle2308837

    CAS  PubMed  Google Scholar 

  • JL Oliver P Bernaola-Galván P Carpena R Román-Roldán (2001) ArticleTitleIsochore chromosome maps of eukaryotic genomes Gene 276 47–56 Occurrence Handle1:CAS:528:DC%2BD3MXntlKmurc%3D Occurrence Handle11591471

    CAS  PubMed  Google Scholar 

  • JL Oliver P Carpena R Román-Roldán T Mata-Balaguer A Mejías-Romero M Hackenberg P Bernaola-Galván (2002) ArticleTitleIsochore chromosome maps of the human genome Gene 300 117–127 Occurrence Handle1:CAS:528:DC%2BD38XptFaksLw%3D Occurrence Handle12468093

    CAS  PubMed  Google Scholar 

  • JL Oliver P Carpena M Hackenberg P Bernaola-Galván (2004) ArticleTitleIsoFinder: computational prediction of isochores in genome sequences Nucleic Acids Res 32 IssueIDWeb Server Issue W287–W292 Occurrence Handle1:CAS:528:DC%2BD2cXlvFKntLw%3D Occurrence Handle15215396

    CAS  PubMed  Google Scholar 

  • J Paces R Zika V Paces A Pavliček O Clay G Bernardi (2004) ArticleTitleRepresenting GC variation along eukaryotic chromosomes Gene 333 135–141 Occurrence Handle1:CAS:528:DC%2BD2cXksFOmtrY%3D Occurrence Handle15177688

    CAS  PubMed  Google Scholar 

  • A Pavliček K Jabbari J Paces V Paces J Henjar G Bernardi (2001) ArticleTitleSimilar integration but different stability of Alus and LINES in the human genome Gene 276 39–45 Occurrence Handle11591470

    PubMed  Google Scholar 

  • A Pavliček O Clay G Bernardi (2002) ArticleTitleTransposable elements encoding functional proteins: pitfalls in unprocessed genomic data? FEES Lett 523 252–253

    Google Scholar 

  • A Rynditch S Zoubak L Tsyba N Tryapitsina-Guley G Bernardi (1998) ArticleTitleThe regional integration of retroviral sequences into the mosaic genomes of mammals Gene 222 1–16 Occurrence Handle1:CAS:528:DC%2BD3cXhsFWqsLg%3D Occurrence Handle9813219

    CAS  PubMed  Google Scholar 

  • CW Schmid (1998) ArticleTitleDoes SINE evolution preclude Alu function? Nucleic Acids Res 26 4541–4550 Occurrence Handle1:CAS:528:DyaK1cXnt1Oks78%3D Occurrence Handle9753719

    CAS  PubMed  Google Scholar 

  • AFA Smit (1999) ArticleTitleInterspersed repeats and other mementos of transposable elements in mammalian genomes Curr Opin Genet Dev 9 657–663 Occurrence Handle1:CAS:528:DC%2BD3cXhslOisA%3D%3D Occurrence Handle10607616

    CAS  PubMed  Google Scholar 

  • R Sorek G Ast D Graur (2002) ArticleTitleAlu-containing exons are alternatively spliced Genome Res 12 1060–1067 Occurrence Handle1:CAS:528:DC%2BD38XlsVWgsr8%3D Occurrence Handle12097342

    CAS  PubMed  Google Scholar 

  • JE Stenger KS Lobachev D Gordenin TA Darden J Jurka MA Resnick (2001) ArticleTitleBiased distribution of inverted and direct Alus in the human genome: Implications for insertion, exclusion, and genome stability Genome Res 11 12–27 Occurrence Handle1:CAS:528:DC%2BD3MXmsVCktw%3D%3D Occurrence Handle11156612

    CAS  PubMed  Google Scholar 

  • K Tamura M Nei (1993) ArticleTitleEstimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees Mol Biol Evol 10 512–526 Occurrence Handle1:CAS:528:DyaK3sXks1CksL4%3D Occurrence Handle8336541

    CAS  PubMed  Google Scholar 

  • AS Waldman RM Liskay (1988) ArticleTitleDependence of intrachromosomal recombination in mammalian cells on uninterrupted homology Mol Cell Biol 8 5350–5357 Occurrence Handle1:CAS:528:DyaL1MXhvFemsQ%3D%3D Occurrence Handle2854196

    CAS  PubMed  Google Scholar 

  • K Wolfe P Sharp W-H Li (1989) ArticleTitleMutation rates differ among regions of the mammalian genome Nature 337 283–285 Occurrence Handle1:STN:280:BiaD1MjivVU%3D Occurrence Handle2911369

    CAS  PubMed  Google Scholar 

  • S Zoubak O Clay G Bernardi (1996) ArticleTitleThe gene distribution of the human genome Gene 174 95–102 Occurrence Handle1:CAS:528:DyaK28XmtV2itb8%3D Occurrence Handle8863734

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Helpful comments from A. Marín, J.P. Martínez-Camacho, M. Ruiz-Rejón, and two anonymous reviewers are greatly appreciated. We are also grateful to A. Smit for providing the RepeatMasker computer program. This work was supported by the Spanish Government (Grants BIO2002-04014-C03-01/02 to J.L.O. and P.B. and BFM2002-00183 to P.C. and P.B.) and Plan Andaluz de Investigacion (CVI-162). M.H. acknowledges a predoctoral grant from the University of Granada (Spain). The help of David Nesbitt and Christopher Previti with the English version of the manuscript is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Oliver.

Additional information

Reviewing Editor: Dr. Jerzy Jurka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackenberg, M., Bernaola-Galván, P., Carpena, P. et al. The Biased Distribution of Alus in Human Isochores Might Be Driven by Recombination. J Mol Evol 60, 365–377 (2005). https://doi.org/10.1007/s00239-004-0197-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0197-2

Keywords

Navigation