Skip to main content
Log in

The scaling of motor noise with muscle strength and motor unit number in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Understanding the origin of noise, or variability, in the motor system is an important step towards understanding how accurate movements are performed. Variability of joint torque during voluntary activation is affected by many factors such as the precision of the descending motor commands, the number of muscles that cross the joint, their size and the number of motor units in each. To investigate the relationship between the peripheral factors and motor noise, the maximum voluntary torque produced at a joint and the coefficient of variation of joint torque were recorded from six adult human subjects for four muscle/joint groups in the arm. It was found that the coefficient of variation of torque decreases systematically as the maximum voluntary torque increases. This decreasing coefficient of variation means that a given torque or force can be more accurately generated by a stronger muscle than a weaker muscle. Simulations demonstrated that muscles with different strengths and different numbers of motor units could account for the experimental data. In the simulations, the magnitude of the coefficient of variation of muscle force depended primarily on the number of motor units innervating the muscle, which relates positively to muscle strength. This result can be generalised to the situation where more than one muscle is available to perform a task, and a muscle activation pattern must be selected. The optimal muscle activation pattern required to generate a target torque using a group of muscles, while minimizing the consequences of signal dependent noise, is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D
Fig. 2A, B
Fig. 3A, B
Fig. 4A–D
Fig. 5A–F

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    CAS  PubMed  Google Scholar 

  • An KN, Hui FC, Morrey BF, Linscheid RL, Chao EY (1981) Muscles across the elbow joint: a biomechanical analysis. J Biomech 14:659–669

    CAS  PubMed  Google Scholar 

  • Basmajian JV (1978) Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore

    Google Scholar 

  • Basmajian JV, Latif A (1957) Integrated actions and functions of the chief flexors of the elbow: a detailed electromyographic study. J. Bone Int Surg 39A:1106–1118

    Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Smith S, Woods JJ (1983) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol 340:335–346

    CAS  PubMed  Google Scholar 

  • Brand PW (1985) Clinical mechanics of the hand. CV Mosby Co., St. Louis

  • Brochier T, Spinks R, Umilta MA, Kirkwood PA, Lemon RN (2001) Specificity of muscular activation during skilled grasp of different objects in monkeys. Soc Neurosci Abstr:303.8

    Google Scholar 

  • Bromberg MB, Larson WL (1996) Relationships between motor-unit number estimates and isometric strength in distal muscles in ALS/MND. J Neurol Sci 139 Suppl:38–42

    Article  Google Scholar 

  • Bromberg MB, Forshew DA, Nau KL, Bromberg J, Simmons Z, Fries TJ (1993) Motor unit number estimation, isometric strength, and electromyographic measures in amyotrophic lateral sclerosis. Muscle Nerve 16:1213–1219

    CAS  PubMed  Google Scholar 

  • Buchanan TS, Moniz MJ, Dewald JP, Zev Rymer W (1993) Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method. J Biomech 26:547–560

    PubMed  Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    CAS  PubMed  Google Scholar 

  • Calancie B, Bawa P (1986) Limitations of the spike-triggered averaging technique. Muscle Nerve 9:78–83

    CAS  PubMed  Google Scholar 

  • Chan KM, Doherty TJ, Brown WF (2001) Contractile properties of human motor units in health, aging, and disease. Muscle Nerve 24:1113–1133

    CAS  PubMed  Google Scholar 

  • Chao EY, An KN, Cooney WP, Linscheid RL (1989) Biomechanics of the hand; a basic research study. World Scientific, Singapore

  • Christensen E (1959) Topography of terminal motor innervation in striated muscles from stillborn infants. Am J Phys Med 38:17–30

    Google Scholar 

  • Collins JJ (1995) The redundant nature of locomotor optimization laws. J Biomech 28:251–267

    Article  CAS  PubMed  Google Scholar 

  • Connolly K (1970) Mechanisms of motor skill development. Academic Press, London

  • Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14:793–801

    PubMed  Google Scholar 

  • Datta AK, Stephens JA (1990) Synchronization of motor unit activity during voluntary contraction in man. J Physiol 422:397–419

    CAS  PubMed  Google Scholar 

  • de Carvalho VC (1976) Study of motor units and arrangement of myons of human musculus plantaris. Acta Anatomica 96:444–448

    PubMed  Google Scholar 

  • Deutsch KM, Newell KM (2001) Age differences in noise and variability of isometric force production. J Exp Child Psychol 80:392–408

    Article  CAS  PubMed  Google Scholar 

  • Dul J, Johnson GE, Shiavi R, Townsend MA (1984a) Muscular synergism—II. A minimum-fatigue criterion for load sharing between synergistic muscles. J Biomech 17:675–684

    CAS  PubMed  Google Scholar 

  • Dul J, Townsend MA, Shiavi R, Johnson GE (1984b) Muscular synergism—I. On criteria for load sharing between synergistic muscles. J Biomech 17:663–673

    CAS  PubMed  Google Scholar 

  • Eccles JC, Sherrington CS (1930) Numbers and contraction-values of individual motor units examined in some muscles of the limb. Proc R Soc Lond B Biol Sci 106:326–357

    Google Scholar 

  • Enoka RM, Burnett RA, Graves AE, Kornatz KW, Laidlaw DH (1999) Task- and age-dependent variations in steadiness. Prog Brain Res 123:389–395

    CAS  PubMed  Google Scholar 

  • Enoka RM, Christou EA, Hunter SK, Kornatz KW, Semmler JG, Taylor AM, Tracy BL (2003) Mechanisms that contribute to differences in motor performance between young and old adults. J Electromyogr Kinesiol 13:1–12

    Article  PubMed  Google Scholar 

  • Fagg AH, Shah A, Barto AG (2002) A computational model of muscle recruitment for wrist movements. J Neurophysiol 88:3348–3358

    PubMed  Google Scholar 

  • Feinstein B, Lindegard B, Nyman E, Wohlfart G (1955) Morphological studies of motor units in normal human muscles. Acta Anatomica 23:127–142

    PubMed  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    PubMed  Google Scholar 

  • Flanders M, Soechting JF (1990) Arm muscle activation for static forces in three-dimensional space. J Neurophysiol 64:1818–1837

    CAS  PubMed  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    CAS  PubMed  Google Scholar 

  • Galganski ME, Fuglevand AJ, Enoka RM (1993) Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol 69:2108–2115

    CAS  PubMed  Google Scholar 

  • Garland SJ, Enoka RM, Serrano LP, Robinson GA (1994) Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction. J Appl Physiol 76:2411–2419

    CAS  PubMed  Google Scholar 

  • Gomi H (2000) Minimum principles for muscle-coordination evaluated by the directional preference of muscle activation during multijoint-arm force regulation task. Tech Rep of IEICE, NC2000–10, pp 9–16

  • Gustafsson B, Pinter MJ (1984) An investigation of threshold properties among cat spinal alpha-motoneurones. J Physiol 357:453–483

    CAS  PubMed  Google Scholar 

  • Hall LA, McCloskey DI (1983) Detections of movements imposed on finger, elbow and shoulder joints. J Physiol 335:519–533

    CAS  PubMed  Google Scholar 

  • Hamilton AFdC, Wolpert DM (2002) Controlling the statistics of action: obstacle avoidance. J Neurophysiol 87:2434–2440

    PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    CAS  PubMed  Google Scholar 

  • Hennemann E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol 28:599–620

    CAS  PubMed  Google Scholar 

  • Hoffman DS, Strick PL (1999) Step-tracking movements of the wrist. IV. Muscle activity associated with movements in different directions. J Neurophysiol 81:319–333

    CAS  PubMed  Google Scholar 

  • Hunter SK, Ryan DL, Ortega JD, Enoka RM (2002) Task differences with the same load torque alter the endurance time of submaximal fatiguing contractions in humans. J Neurophysiol 88:3087–3096

    PubMed  Google Scholar 

  • Jones KE, Hamilton AFdC, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    PubMed  Google Scholar 

  • Keen DA, Yue GH, Enoka RM (1994) Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol 77:2648–2658

    CAS  PubMed  Google Scholar 

  • Kuwabara S, Mizobuchi K, Ogawara K, Hattori T (1999) Dissociated small hand muscle involvement in amyotrophic lateral sclerosis detected by motor unit number estimates. Muscle Nerve 22:870–873

    Article  CAS  PubMed  Google Scholar 

  • Laidlaw DH, Bilodeau M, Enoka RM (2000) Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle Nerve 23:600–612

    Article  CAS  PubMed  Google Scholar 

  • Luschei ES, Ramig LO, Baker KL, Smith ME (1999) Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with Parkinson disease. J Neurophysiol 81:2131–2139

    CAS  PubMed  Google Scholar 

  • MacConaill MA (1967) The ergonomic aspects of articular mechanisms. In: Evans FG (ed) Studies of the anatomy and function of bones and joints. Springer, Berlin, pp 69–80

  • Macefield VG, Fuglevand AJ, Howell JN, Bigland-Ritchie B (2000) Discharge behaviour of single motor units during maximal voluntary contractions of a human toe extensor. J Physiol 528:227–234

    CAS  PubMed  Google Scholar 

  • McComas AJ (1998) 1998 ISEK congress keynote lecture: motor units: how many, how large, what kind? International Society of Electrophysiology and Kinesiology. J Electromyogr Kinesiol 8:391–402

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RD (1962) Growth of human striated muscle. Nature 195:194–195

    CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Nordstrom MA, Miles TS (1991) Discharge variability and physiological properties of human masseter motor units. Brain Res 541:50–56

    Article  CAS  PubMed  Google Scholar 

  • Pedotti A, Krishnan VV, Stark L (1978) Optimization of muscle-force sequencing in human locomotion. Math Biosci 38:57–76

    Article  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man; a clinical study of localization of function. Macmillan, Oxford

  • Powers RK, Binder MD (1985) Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. J Neurophysiol 53:497–517

    CAS  PubMed  Google Scholar 

  • Refshauge KM, Chan R, Taylor JL, McCloskey DI (1995) Detection of movements imposed on human hip, knee, ankle and toe joints. J Physiol 488:231–241

    CAS  PubMed  Google Scholar 

  • Schiffman JM, Luchies CW (2001) The effects of motion on force control abilities. Clin Biomech (Bristol, Avon) 16:505–513

    Google Scholar 

  • Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JTJ (1979) Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 47:415–451

    CAS  PubMed  Google Scholar 

  • Semmler JG, Nordstrom MA (1998) Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 119:27–38

    Article  CAS  PubMed  Google Scholar 

  • Somjen G, Carpenter DO, Henneman E (1965) Responses of motoneurons of different sizes to graded stimulation of supraspinal centers of the brain. J Neurophysiol 28:958–965

    CAS  PubMed  Google Scholar 

  • Stein RB, Yang JF (1990) Methods for estimating the number of motor units in human muscles. Ann Neurol 28:487–495

    CAS  PubMed  Google Scholar 

  • Tanji J, Kato M (1973) Firing rate of individual motor units in voluntary contraction of abductor digiti minimi muscle in man. Exp Neurol 40:771–783

    CAS  PubMed  Google Scholar 

  • Taylor AM, Christou EA, Enoka RM (2003) Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol 90:1350–1361

    PubMed  Google Scholar 

  • Tomlinson BE, Irving D (1977) The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34:213–219

    CAS  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31:693–703

    CAS  PubMed  Google Scholar 

  • van Bolhuis BM, Gielen CC (1997) The relative activation of elbow-flexor muscles in isometric flexion and in flexion/extension movements. J Biomech 30:803–811

    Article  PubMed  Google Scholar 

  • van Bolhuis BM, Gielen CC (1999) A comparison of models explaining muscle activation patterns for isometric contractions. Biol Cybern 81:249–261

    Article  PubMed  Google Scholar 

  • van Zuylen EJ, Gielen CC, Denier van der Gon JJ (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. J Neurophysiol 60:1523–1548

    PubMed  Google Scholar 

  • Vasavada AN, Peterson BW, Delp SL (2002) Three-dimensional spatial tuning of neck muscle activation in humans. Exp Brain Res 147:437–448

    Article  PubMed  Google Scholar 

  • Westling G, Johansson RS, Thomas CK, Bigland-Ritchie B (1990) Measurement of contractile and electrical properties of single human thenar motor units in response to intraneural motor-axon stimulation. J Neurophysiol 64:1331–1338

    CAS  PubMed  Google Scholar 

  • Winters JM, Stark L (1988) Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech 21:1027–1041

    CAS  PubMed  Google Scholar 

  • Yao W, Fuglevand RJ, Enoka RM (2000) Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol 83:441–452

    Google Scholar 

  • Yeo BP (1976) Investigations concerning the principle of minimal total muscular force. J Biomech 9:413–416

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

This work was supported by grants from the Brain Research Trust, the Wellcome Trust and the Human Frontiers Science Program. We thank James Ingram for assistance with computer programming and Prof. P. Bawa for discussions on motor unit twitch and overall force variability in motor unit output

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia F. de C. Hamilton.

Appendix

Appendix

Two cost functions describing how muscles should be used to minimise the consequences of signal-dependent noise can be derived from the basic TOPS cost function given in Eq. 8. Using the simulation results given in Eq. 5 and substituting:

$$ CV{\text{ = }}\sigma {\text{/}}f{\text{ }} $$
(10)

gives:

$$ \sigma {\text{ = exp(}}d{\text{) }}f{\text{ MUN }}^{{{\text{ - 0}}{\text{.5}}}} {\text{ }} $$
(11)

As this holds for every muscle, the constant exp(d) can be ignored and σ can be substituted into the TOPS cost function (Eq. 8) to give:

$$ C_{{{\text{TOPS}}}} = {\sum\limits_{i = 1}^n ( }{f_{i} ^{2} } \mathord{\left/ {\vphantom {{f_{i} ^{2} } {{\text{MUN}}_{i} }}} \right. \kern-\nulldelimiterspace} {{\text{MUN}}_{i} }) $$
(12)

Despite the interesting predictions of the MUN cost function, the current paucity of data on motor unit numbers means that this cost function is not easy to apply in practice. For this reason, we also derive a second, more practical cost function, based on the experimental results. Taking the mean parameters for the six subjects, we have shown that:

$$ {\text{CV = exp( - 2}}{\text{.76) MVT }}^{{{\text{ - 0}}{\text{.25}}}} {\text{ }} $$
(13)

Substituting Eq. 10 gives:

$$ \sigma {\text{ = exp( - 2}}{\text{.76) }}f{\text{ MVT }}^{{{\text{ - 0}}{\text{.25}}}} {\text{ }} $$
(14)

Again, the constant exp(−2.76) can be ignored and σ can be substituted into Eq. 8 to give:

$$ C_{{{\text{TOPS}}}} = {\sum\limits_{i = 1}^n ( }{f_{i} ^{2} } \mathord{\left/ {\vphantom {{f_{i} ^{2} } {{\text{MVT}}_{i} ^{{0.5}} }}} \right. \kern-\nulldelimiterspace} {{\text{MVT}}_{i} ^{{0.5}} }) $$
(15)

This cost function can be used to determine the optimal control strategy for minimising noise over multiple muscles and requires only knowledge of the maximum voluntary torque produced by each muscle, which is available in standard tables (for example, Winters and Stark 1988).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de C. Hamilton, A.F., Jones, K.E. & Wolpert, D.M. The scaling of motor noise with muscle strength and motor unit number in humans. Exp Brain Res 157, 417–430 (2004). https://doi.org/10.1007/s00221-004-1856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1856-7

Keywords

Navigation