Skip to main content
Log in

The staling of bread: an X-ray diffraction study

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Bread crumb X-ray patterns were analysed by different methods, the objective being to provide more in-depth knowledge of the relationships among starch crystallinity, amylopectin retrogradation and bread firming. Both crumb-firming and amylopectin retrogradation increased with storage time. However, total mass crystallinity grade and relative crystallinity increased only in the first 24 h. The determination of starch crystallinity requires the separation of the crystalline and amorphous intensities, which is sometimes arbitrary, so it would be useful to improve this methodology. Different methods used to determine total crystallinity grade only show the differences existing between fresh and stored bread. B-type crystal structure—corresponding to the amylopectin retrogradation—increased during bread storage, showing a high correlation with bread-firming and storage time. This fact emphasized the above results and suggested that amylopectin retrogradation is an important component to the elucidation of bread staling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Axford DW, Colwell KH, Cornford SJ, Elton GA. (1968) J Sci Food Agric 19:95–101

    Google Scholar 

  2. Bashford LL, Hartung TE (1976) J Food Sci 41:446–447

    Google Scholar 

  3. Willhoft EMA (1973) Baker’s Dig 47:14–20

    Google Scholar 

  4. Schoch TJ, French D (1947) Cereal Chem 24:231–249

    CAS  Google Scholar 

  5. Kim SK, D’Appolonia BL (1997) Cereal Chem 54:207–215

    Google Scholar 

  6. Kim SK, D’Appolonia BL (1997) Cereal Chem 54:216–224

    Google Scholar 

  7. Morgan KR, Gerrard JA, Every D, Ross M, Gilpin MJ (1997) Stärke 49:54–59

  8. Inagaki T, Seib P (1992) Cereal Chem 69:321–325

    CAS  Google Scholar 

  9. León AE, Durán E, Benedito de Barber C (1997) Z Lebensm Unters Forsch 204:316–320

    Article  Google Scholar 

  10. Armero E, Collar C (1998) J Cereal Sci 28:165–174

    Google Scholar 

  11. Ghiasi K, Hoseney RC, Zeleznak K, Rogers DE (1984) Cereal Chem 61:281–285

    CAS  Google Scholar 

  12. Rogers DE, Zeleznak KJ, Lai CS, Hoseney RC (1988) Cereal Chem 65:398–401

    CAS  Google Scholar 

  13. Dragsdorf RD, Varriano-Marston E (1980) Cereal Chem 57:310–314

    CAS  Google Scholar 

  14. Martin ML, Zeleznak KJ, Hoseney RC (1991) Cereal Chem 68:498–503

    CAS  Google Scholar 

  15. León AE, Durán E, Benedito de Barber C (1997) Z Lebensm Unters Forsch 205:131–134

    Article  Google Scholar 

  16. Durán E, León AE, Barber B, Benedito de Barber C (2001) Eur Food Res Technol 212:203–207

    Article  CAS  Google Scholar 

  17. Zobel HF (1988) Stärke 40:1–7

  18. Zobel HF (1988) Stärke 40:44–50

  19. Knightly WH (1977) Baker’s Dig 51:52–56, 144–150

    CAS  Google Scholar 

  20. Zobel HF, Young SN, Rocca LA (1988) Cereal Chem 65:443–446

    CAS  Google Scholar 

  21. Buleón A, Colonna P, Planchot V, Ball S (1998) Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  22. Mizuno A, Mitsuiki M, Motoki M (1998) J Agric Food Chem 46:98–103

    Article  CAS  PubMed  Google Scholar 

  23. Hug-Iten S, Escher F, Conde-Petit B (2001) Cereal Chem 78:421–428

    CAS  Google Scholar 

  24. American Association of Cereal Chemists (1995) Approved methods of the AACC, 9th edn. AACC, St. Paul, Minn.

  25. Conover W (1999) Some methods based on ranks. In: Conover W (ed) Practical nonparametric statistics, 3rd edn. Wiley, New York, pp 312–314

  26. Biliaderis CG (1990) Thermal analysis of food carbohydrates. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. AACC, St Paul Minn., pp 168–220

  27. Manzocco L, Nicoli MC, Labuza TP (2003) Ital Food Technol 31:17–23

    Google Scholar 

  28. Gray JA, Bemiller JN (2003) Compr Rev Food Sci Food Safety 2:1–21

    CAS  Google Scholar 

  29. Zobel HF, Kulp K (1996) The staling mechanism. In: Hebeda RE, Zobel HF (eds.) Baked goods freshness. Technology, evaluation and inhibition of staling. Dekker, New York, pp 1–64

Download references

Acknowledgements

The authors wish to acknowledge the financial support of Agencia Nacional de Promoción Científica y Tecnológica, BID 1201/OC-AR N° PICT 09–07321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto E. León.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribotta, P.D., Cuffini, S., León, A.E. et al. The staling of bread: an X-ray diffraction study. Eur Food Res Technol 218, 219–223 (2004). https://doi.org/10.1007/s00217-003-0835-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0835-8

Keywords

Navigation