Skip to main content
Log in

Covalent attachment of functionalized cardiolipin on a biosensor gold surface allows repetitive measurements of anticardiolipin antibodies in serum

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Antiphospholipid antibodies (aPL) are a relevant serological indicator of antiphospholipid syndrome (APS). A solid-state surface with covalently bound ω-amine-functionalized cardiolipin was established and the binding of β2-glycoprotein I (β2-GPI) was investigated either by use of surface plasmon resonance (SPR) biosensor, by electrically switchable DNA interfaces (switchSENSE) and by scanning tunneling microscopy (STM). STM could clearly visualize the attachment of β2-GPI to the cardiolipin surface. Using the switchSENSE sensor, β2-GPI as specific ligand could be identified by increased hydrodynamic friction. The binding of anti-cardiolipin antibodies (aCL) was detected against the ω-amine-functionalized cardiolipin-modified SPR biosensor (aCL biosensor) using sera from healthy donors, APS patients and syphilis patients. Our results showed that the aCL biosensor is a much more sensitive diagnostic device for APS patients compared to previous methods. The specificity between β2-GPI-dependent autoimmune- and β2-GPI-independent infection-associated types of aPLs was also studied and they can be distinguished by the different binding kinetics and patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aCL:

Anticardiolipin antibody

aPL:

Antiphospholipid antibody

APS:

Antiphospholipid syndrome

AUC:

Area under the curve

aβ2-GPI:

Anti-β2-GPI antibodies

BB:

Blocking buffer

BFP:

Biological false positive

FC:

Flow cell

FCS:

Fetal calf serum

HBS:

HEPES-buffered saline

HRP:

Horseradish peroxidase

LA:

Lupus anticoagulant

mAb:

Monoclonal antibody

MW:

Molecular weight

PBS:

Phosphate-buffered saline

PL:

Phospholipid

ROC:

Receiver operating characteristic

RU:

Resonance units

SAM:

Self-assembled monolayer

SD:

Standard deviation

SLE:

Systemic lupus erythematosus

SPR:

Surface plasmon resonance

STM:

Scanning tunneling microscopy

TMB:

3,3′,5,5′-tetramethylbenzidine

VDRL:

Venereal disease research laboratory

WB:

Washing buffer

β2-GPI:

β2-glycoprotein I

References

  1. Wassermann A, Neisser A, Bruck C (1906) Dtsch Med Wochenschr 32:745–746

    Article  Google Scholar 

  2. Pangborn MC (1941) Proc Soc Exp Biol Med 48:484–486

    CAS  Google Scholar 

  3. Moore JE, Mohr CF (1952) J Am Med Assoc 150:467–473

    Article  CAS  Google Scholar 

  4. Johansson EA, Lassus A (1974) Ann Clin Res 6:105–108

    CAS  Google Scholar 

  5. Arnout J, Meijer P, Vermylen J (1999) Thromb Haemost 81:929–934

    CAS  Google Scholar 

  6. Celli CM, Gharavi AE, Chaimovich H (1999) Biochim Biophys Acta 1416:225–238

    Article  CAS  Google Scholar 

  7. Hughes GR (1983) Br Med J (Clin Res Ed) 287:1088–1089

    Article  CAS  Google Scholar 

  8. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, Derksen RH PGDEG, Koike T, Meroni PL, Reber G, Shoenfeld Y, Tincani A, Vlachoyiannopoulos PG, Krilis SA (2006) J Thromb Haemost 4:295–306

    Article  CAS  Google Scholar 

  9. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA (1990) Proc Natl Acad Sci U S A 87:4120–4124

    Article  CAS  Google Scholar 

  10. Galli M, Comfurius P, Maassen C, Hemker HC, de Baets MH, van Breda-Vriesman PJ, Barbui T, Zwaal RF, Bevers EM (1990) Lancet 335:1544–1547

    Article  CAS  Google Scholar 

  11. Matsuura E, Igarashi Y, Fujimoto M, Ichikawa K, Koike T (1990) Lancet 336:177–178

    Article  CAS  Google Scholar 

  12. von Landenberg P, von Landenberg C, Schölmerich J, Lackner KJ (2001) Med Klin (Munich) 96:331–342

    Article  Google Scholar 

  13. Wang SX, Cai G, Sui S (1999) Biochemistry 38:9477–9484

    Article  CAS  Google Scholar 

  14. Wang SX, Sun YT, Sui SF (2000) Biochem J 348(Pt 1):103–106

    Article  CAS  Google Scholar 

  15. Arvieux J, Roussel B, Jacob MC, Colomb MG (1991) J Immunol Methods 143:223–229

    Article  CAS  Google Scholar 

  16. Cabral AR, Cabiedes J, Alarcon-Segovia D (1995) J Rheumatol 22:1894–1898

    CAS  Google Scholar 

  17. Keeling DM, Wilson AJ, Mackie IJ, Machin SJ, Isenberg DA (1992) Br J Haematol 82:571–574

    Article  CAS  Google Scholar 

  18. Metzger J, von Landenberg P, Kehrel M, Buhl A, Lackner KJ, Luppa PB (2007) Clin Chem 53:1137–1143

    Article  CAS  Google Scholar 

  19. Buhl A, Page S, Heegaard NH, von Landenberg P, Luppa PB (2009) Biosens Bioelectron 25:198–203

    Article  CAS  Google Scholar 

  20. Beseničar M, Maček P, Lakey JH, Anderluh G (2006) Chem Phys Lipids 141:169–178

    Article  Google Scholar 

  21. Johns MK, Yin MX, Conway SJ, Robinson DE, Wong LS, Bamert R, Wettenhall RE, Holmes AB (2009) Org Biomol Chem 7:3691–3697

    Article  CAS  Google Scholar 

  22. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) J Colloid Interface Sci 143:513–526

    Article  CAS  Google Scholar 

  23. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  24. Rasband WS, Image J (1997–2008) U.S. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/ Accessed 28.06.2012

  25. Rant U, Pringsheim E, Kaiser W, Arinaga K, Knezevic J, Tornow M, Fujita S, Yokoyama N, Abstreiter G (2009) Nano Lett 9:1290–1295

    Article  CAS  Google Scholar 

  26. Rant U, Arinaga K, Scherer S, Pringsheim E, Fujita S, Yokoyama N, Tornow M, Abstreiter G (2007) Proc Natl Acad Sci U S A 104:17364–17369

    Article  CAS  Google Scholar 

  27. Hanley JA, McNeil BJ (1982) Radiology 143:29–36

    CAS  Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Biometrics 44:837–845

    Article  CAS  Google Scholar 

  29. Gamsjaeger R, Johs A, Gries A, Gruber HJ, Romanin C, Prassl R, Hinterdorfer P (2005) Biochem J 389:665–673

    Article  CAS  Google Scholar 

  30. Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, Davidson K, Eguinoa A, Ellson CD, Lipp P, Manifava M, Ktistakis N, Painter G, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Dove SK, Michell RH, Grewal A, Nazarian A, Erdjument-Bromage H, Tempst P, Stephens LR, Hawkins PT (2002) Mol Cell 9:95–108

    Article  CAS  Google Scholar 

  31. Häussling L, Michel B, Ringsdorf H, Rohrer H (1991) Angew Chem Int Ed Engl 30:569–572

    Article  Google Scholar 

  32. Edinger K, Goelzhaeuser A, Demota K, Woell C, Grunze M (1993) Langmuir 9:4–8

    Article  CAS  Google Scholar 

  33. Bouma B, de Groot PG, van den Elsen JM, Ravelli RB, Schouten A, Simmelink MJ, Derksen RH, Kroon J, Gros P (1999) EMBO J 18:5166–5174

    Article  CAS  Google Scholar 

  34. Schwarzenbacher R, Zeth K, Diederichs K, Gries A, Kostner GM, Laggner P, Prassl R (1999) EMBO J 18:6228–6239

    Article  CAS  Google Scholar 

  35. Albrecht T (2003) Dynamik und Mechanismen der heterogenen Elektronentransferprozesse von synthetischen und natürlichen Haemproteinen. Technische Universität Berlin, Berlin

    Google Scholar 

  36. Fluss R, Faraggi D, Reiser B (2005) Biom J 47:458–472

    Article  Google Scholar 

  37. Müller C, Schlichtiger A, Balling G, Steigerwald U, Luppa PB, Thaler M (2010) Thromb Res 126:e102–109

    Article  Google Scholar 

  38. Matsuda J, Saitoh N, Gohchi K, Gotoh M, Tsukamoto M (1993) Br J Haematol 85:799–802

    Article  CAS  Google Scholar 

  39. Petrovas C, Vlachoyiannopoulos PG, Kordossis T, Moutsopoulos HM (1999) J Autoimmun 13:347–355

    Article  CAS  Google Scholar 

  40. Chou TN, Hsu TC, Chen RM, Lin LI, Tsay GJ (2000) Lupus 9:551–554

    Article  CAS  Google Scholar 

  41. Hsu TC, Tsay GJ (2001) Rheumatology (Oxford) 40:152–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Anita Schreiegg for excellent technical assistance. This study was supported by the Stiftung Pathobiochemie und Molekulare Diagnostik of the German Society of Clinical Chemistry and Laboratory Medicine and the Australian Research Council, Discovery Project, Grant DP1094497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Schlichtiger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 0.99 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlichtiger, A., Baier, C., Yin, MX. et al. Covalent attachment of functionalized cardiolipin on a biosensor gold surface allows repetitive measurements of anticardiolipin antibodies in serum. Anal Bioanal Chem 405, 275–285 (2013). https://doi.org/10.1007/s00216-012-6467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6467-8

Keywords

Navigation