Skip to main content
Log in

Modeling of retention of adrenoreceptor agonists and antagonists on polar stationary phases in hydrophilic interaction chromatography: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Retention prediction models for reversed-phase liquid chromatography (RPLC) have been extensively studied owing to the fact that RPLC remains the most widely used chromatographic technique especially in the field of pharmaceutical and biomedical analyses. However, RPLC is not always the method of choice for the analysis of some compounds that have high polarity. Hydrophilic interaction chromatography (HILIC) has been gaining interest in the last few years as an alternative option to RPLC for the analysis of polar and hydrophilic analytes. HILIC is a variant of normal-phase liquid chromatography, but utilizes water in a water-miscible organic solvent as the eluent in conjunction with a hydrophilic stationary phase. The present review aims to summarize recent contributions on the development of retention prediction models for a group of basic analytes, namely, the adrenoreceptor agonists and antagonists, on different polar stationary phases. The use of multiple linear regression and artificial neural networks in model building is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karelson M, Lovanov M, Katritzky AR (1996) Chem Rev 96:1027–1044

    Article  CAS  Google Scholar 

  2. Kaliszan R (1997) Structure and retention in chromatography. A chemometric approach. Harwood, Amsterdam

    Google Scholar 

  3. Kier L, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic, New York

    Google Scholar 

  4. Put R, Vander Heyden Y (2007) Anal Chim Acta 602:164–172

    Article  CAS  Google Scholar 

  5. Kaliszan R (1993) J Chromatogr A 656:417–435

    Article  CAS  Google Scholar 

  6. Put R, Daszykowski M, Baczek T, Vander Heyden Y (2006) J Proteome Res 5:1618–1625

    Article  CAS  Google Scholar 

  7. Baczek T, Bucinski A, Ivanov AR, Kaliszan R (2004) Anal Chem 76:1726–1732

    Article  CAS  Google Scholar 

  8. Baczek T, Wiczling P, Marszall M, Vander Heyden Y, Kaliszan R (2005) J Proteome Res 4:555–563

    Article  CAS  Google Scholar 

  9. Heberger K (2007) J Chromatogr A 1158:273–305

    Article  CAS  Google Scholar 

  10. Musumarra G, Scarlata G, Romano G, Cappello G, Clementi S, Giulietti G (1987) J Anal Toxicol 11:154–163

    CAS  Google Scholar 

  11. Musumarra G, Scarlata G, Cirma G, Romano G, Palazzo S, Clementi S, Giuliettr G (1985) J Chromatogr 350:151–168

    Article  CAS  Google Scholar 

  12. Musumarra G, Scarlata G, Ramano G, Clementi S (1983) J Anal Toxicol 7:286–292

    CAS  Google Scholar 

  13. Delaney MF, Papas AN, Walters MJ (1987) J Chromatogr 410:31–41

    Article  CAS  Google Scholar 

  14. Csiktusnadi-Kiss GA, Forgacs E, Markuszewski M, Balogh S (1998) Analusis 26:400–406

    Article  CAS  Google Scholar 

  15. Jinno K (2001) Chromatography 22:1–9

    CAS  Google Scholar 

  16. Jakab A, Schubert G, Prodan M, Forgacs E (2002) J Chromatogr B 770:227–236

    Article  CAS  Google Scholar 

  17. Put R, Perrin C, Questier F, Coomans D, Massart DL, Vander Heyden Y (2003) J Chromatogr A 988:261–276

    Article  CAS  Google Scholar 

  18. Lippa KA, Sander LC, Wise SA (2004) Anal Bioanal Chem 378:365–377

    Article  CAS  Google Scholar 

  19. Hancock T, Put R, Coomans D, Vander Heyden Y, Everingham Y (2005) Chemom Intell Lab Syst 76:185–196

    Article  CAS  Google Scholar 

  20. Marengo E, Gennaro MC, Angelino S (1998) J Chromatogr A 799:47–55

    Article  CAS  Google Scholar 

  21. Neter J, Wasserman W, Kutner M (1995) Applied linear statistical models, 3rd edn. Irwin, Homewood

    Google Scholar 

  22. Nasal A, Siluk D, Kaliszan R (2003) Curr Med Chem 10:381–426

    CAS  Google Scholar 

  23. Kaliszan R, van Straten MA, Markuszewski M, Cramers CA, Claessens HA (1999) J Chromatogr A 855:455–486

    Article  CAS  Google Scholar 

  24. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  25. Fausett L (1994) Fundamentals of neural networks. Prentice Hall, New York

    Google Scholar 

  26. Loukas YL (2000) J Chromatogr A 904:119–129

    Article  CAS  Google Scholar 

  27. Marengo E, Gennaro MC, Angelino S (1998) J Chromatogr A 799:47–55

    Article  CAS  Google Scholar 

  28. Booth TD, Azzaoui K, Wainer IW (1997) Anal Chem 69:3879

    Article  CAS  Google Scholar 

  29. Petritis K, Kangas LJ, Ferguson PL, Anderson GA, Pasa-Tolic L, Lipton MS, Auberry KJ, Srittmatter EF, Shen Y, Zhao R, Smith RD (2003) Anal Chem 75:1039–1048

    Article  CAS  Google Scholar 

  30. Metting HJ, Coenegracht PMJ (1996) J Chromatogr A 728:47–53

    Article  CAS  Google Scholar 

  31. Guo W, Lu Y, Zheng XM (2000) Talanta 51:479–488

    Article  CAS  Google Scholar 

  32. Agatonovic-Kustrin S, Zecevic M, Zivanovic LJ (1999) J Pharm Biomed Anal 21:95–103

    Article  CAS  Google Scholar 

  33. Tham SY, Agatanovic-Kustrin S (2002) J Pharm Biomed Anal 28:581–590

    Article  CAS  Google Scholar 

  34. Diehl DM, Grumbach ES, Mazzeo JR, Neue UD (2003) Paper no 800-5 presented at Pittcon 2003, Orlando

  35. Gustavasson SA, Samskog J, Markides KE, Langstrom B (2001) J Chromatogr A 937:41–47

    Article  Google Scholar 

  36. Voyksner RD (1997) In: Cole RB (ed) Electrospray ionization mass spectrometry. Wiley, Hoboken

    Google Scholar 

  37. Naidong W, Shou W, Chen YL, Jiang X (2001) J Chromatogr B 754:387–399

    Article  CAS  Google Scholar 

  38. Alpert AJ (1990) J Chromatogr 449:177–196

    Article  Google Scholar 

  39. Strege MA, Stevenson S, Lawrence SM (2000) Anal Chem 72:4629–4633

    Article  CAS  Google Scholar 

  40. Naidong W (2003) J Chromatogr B 796:209–224

    Article  CAS  Google Scholar 

  41. Edwardson PA, Collins IJ, Scawen MD, Atkinson T, Cox GB, Sivakoff S, Stout RW (1991) J Chromatogr 545:79–89

    Article  CAS  Google Scholar 

  42. Zhu BY, Mant CT, Hodges RS (1991) J Chromatogr 548:13–24

    Article  CAS  Google Scholar 

  43. Feste AS, Khan I (1992) J Chromatogr 630:129–139

    Article  CAS  Google Scholar 

  44. Churms SC (1996) J Chromatogr A 720:75–91

    Article  CAS  Google Scholar 

  45. Lin SC, Lee WC (1998) J Chromatogr A 803:302–306

    Article  CAS  Google Scholar 

  46. Curren MSS, King JW (2002) J Chromatogr A 954:41–49

    Article  CAS  Google Scholar 

  47. Olsen BA (2001) J Chromatogr A 913:113–122

    Article  CAS  Google Scholar 

  48. Quiming NS, Denola NL, Soliev AB, Saito Y, Jinno K (2007) Chromatographia 66:5–12

    Article  CAS  Google Scholar 

  49. Quiming NS, Denola NL, Soliev AB, Saito Y, Jinno K (2007) Anal Bioanal Chem 389:1477–1488

    Article  CAS  Google Scholar 

  50. Quiming NS, Denola NL, Soliev AB, Saito Y, Jinno K (2008) Anal Sci 24:139–148

    Article  CAS  Google Scholar 

  51. Quiming NS, Denola NL, Saito Y, Jinno K (2008) J Sep Sci 31:1550–1563

    Article  CAS  Google Scholar 

  52. Quiming NS, Denola NL, Saito Y, Catabay AP, Jinno K (2008) Chromatographia 67:507–515

    Article  CAS  Google Scholar 

  53. Quiming NS, Denola NL, Ueta I, Saito Y, Tatematsu S, Jinno K (2007) Anal Chim Acta 598:41–50

    Article  CAS  Google Scholar 

  54. Quiming NS, Denola NL, Saito Y, Jinno K (2007) Anal Bioanal Chem 388:1693–1706

    Article  CAS  Google Scholar 

  55. Quiming NS, Denola NL, Samsuri SR, Saito Y, Jinno K (2008) J Sep Sci 31:1537–1549

    Article  CAS  Google Scholar 

  56. LoBrutto R, Jones A, Kazakevich YV (2001) J Chromatogr A 913:189–196

    Article  CAS  Google Scholar 

  57. Jones A, LoBrutto R, Kazakevich YV (2002) J Chromatogr A 964:179–187

    Article  CAS  Google Scholar 

  58. LoBrutto R, Jones A, Kazakevich YV, McNair HM (2001) J Chromatogr A 913:173–187

    Article  CAS  Google Scholar 

  59. Pan L, LoBrutto R, Kazakevich YV, Thompson R (2004) J Chromatogr A 1049:63–73

    CAS  Google Scholar 

  60. Hashem H, Jira T (2006) J Sep Sci 29:986–994

    Article  CAS  Google Scholar 

  61. Fragkaki AG, Koupparis MA, Georgakopoulos CG (2004) Anal Chim Acta 512:165–171

    Article  CAS  Google Scholar 

  62. Kaliszan R, van Strate MA, Markuszewski M, Crammers CA, Claessens HA (1999) J Chromatogr A 855:455–486

    Article  CAS  Google Scholar 

  63. D’Archivio AA, Ruggieri F, Mazzeo P, Tettamanti E (2007) Anal Chim Acta 593:140–151

    Article  CAS  Google Scholar 

  64. Wang A, Tan LC, Carr PW (1999) J Chromatogr A 848:21–37

    Article  CAS  Google Scholar 

  65. Wang A, Carr PW (2002) J Chromatogr A 965:3–23

    Article  CAS  Google Scholar 

  66. Ruggieri F, D’Archivio AA, Carlucci G, Mazzeo P (2005) J Chromatogr A 1076:163–169

    Article  CAS  Google Scholar 

  67. Aschi M, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 582:235–242

    Article  CAS  Google Scholar 

  68. Hemstrom P, Irgum K (2006) J Sep Sci 29:1784–1821

    Article  Google Scholar 

  69. Shanks RG (1984) Trends Pharm Sci 5:405–409

    Article  Google Scholar 

  70. Chavey W (2000) Am Fam Phys 62:2453–2462

    Google Scholar 

  71. Virant FS (1997) In: Weiler JM (ed) Allergic and respiratory disease in sports medicine. Dekker, New York

    Google Scholar 

  72. Martineau L, Horan MA, Rothwell NJ, Little LA (1992) Clin Sci 8:615–621

    Google Scholar 

  73. World Anti-Doping Agency (2003) World anti-doping code, version 3.0. Word Anti-Doping Agency, Montreal, http://www.wada-ama.org

  74. Kier L, Hall LH (1986) In: Molecular connectivity in structure-activity analysis. Research Studies, Baldock

    Google Scholar 

  75. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics part A. Elsevier, Amsterdam

    Google Scholar 

  76. Hawkins DM (2004) J Chem Inf Comput Sci 44:1–12

    CAS  Google Scholar 

  77. Marquardt D (1963) SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  78. Cox GB, Stout RW (1987) J Chromatogr 384:315–336

    Article  CAS  Google Scholar 

  79. Golmohammadi H, Fatemi MH (2005) Electrophoresis 26:3438–3444

    Article  CAS  Google Scholar 

  80. Mishra D, Yadav A, Ray S, Kalra PK (2005) Neural Inf Process Lett Rev 9:41–50

    Google Scholar 

  81. Nelson MC, Illingworth WT (1986) A practical guide to neural nets. Addison-Wesley, Reading

    Google Scholar 

  82. Lawrence S, Giles GL, Tsoi AC (1996) What size neural networks gives optimal generalization? Convergence properties of backpropagation. Technical report UMIACS-TR-96-22 and CS-TR-3617. Institute for Advanced Computer Studies, University of Maryland, College Park

    Google Scholar 

  83. Sarle WS (1995) In: Proceedings of the 27th symposium on the interface of computing science and statistics, p 352

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyokatsu Jinno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinno, K., Quiming, N.S., Denola, N.L. et al. Modeling of retention of adrenoreceptor agonists and antagonists on polar stationary phases in hydrophilic interaction chromatography: a review. Anal Bioanal Chem 393, 137–153 (2009). https://doi.org/10.1007/s00216-008-2329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2329-9

Keywords

Navigation