Skip to main content
Log in

Transcriptome analysis of Enterococcus faecalis toward its adaption to surviving in the mouse intestinal tract

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We have performed a transcriptomic in vivo study with Enterococcus faecalis OG1RF in the intestine of living mice to identify novel latent and adaptive fitness determinants within E. faecalis. From 2,658 genes that are present in E. faecalis strain OG1RF, 124 genes were identified as significantly differentially expressed within the intestinal tract of living mice as compared to exponential growth in BHI broth. The groups of significantly up- or down-regulated genes consisted of 94 and 30 genes, respectively, for which 46 and 18 a clear annotation to a functionally described protein was found. These included genes involved in energy metabolism (e.g., dhaK and glpK pathway), transport and binding mechanisms (e.g., phosphoenolpyruvate carbohydrate PTS) as well as fatty acid metabolism (fab genes). The novel putative fitness determinants found in this work may be helpful for future studies of E. faecalis adaptation to the intestinal tract, which is also a prerequisite for infection in a compromised or inflamed host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bickhart DM, Benson DR (2011) Transcriptomes of Frankia sp. strain CcI3 in growth transitions. BMC Microbiol 11:192. doi:10.1186/1471-2180-11-192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bizzini A et al (2010) Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol 192:779–785. doi:10.1128/JB.00959-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohle LA et al (2010) Identification of proteins related to the stress response in Enterococcus faecalis V583 caused by bovine bile. Proteome Sci 8:37. doi:10.1186/1477-5956-8-37

    Article  PubMed Central  PubMed  Google Scholar 

  • Bourgogne A et al (2008) Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110. doi:10.1186/gb-2008-9-7-r110

    Article  PubMed Central  PubMed  Google Scholar 

  • Centeno JA, Menendez S, Hermida M, Rodriguez-Otero JL (1999) Effects of the addition of Enterococcus faecalis in Cebreiro cheese manufacture. Int J Food Microbiol 48:97–111

    Article  CAS  PubMed  Google Scholar 

  • Contesse G, Crepin M, Gros F, Ullmann A, Monod J (1969) On the mechanism of catabolite repression. In: Beckwith JR, Zipser D (eds) The lactose operon. Cold Spring Harbor Laboratory Press, New York, pp 401–415

    Google Scholar 

  • Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC (1992) Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60:3971–3978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brussow H (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190:3161–3168. doi:10.1128/JB.01637-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deutscher J, Sauerwald H (1986) Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol 166:829–836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferases system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031. doi:10.1128/MMBR.00024-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flahaut S, Hartke A, Giard J-C, Benachour A, Boutibonnes P, Auffray Y (1996) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138:49–54

    Article  CAS  PubMed  Google Scholar 

  • Flahaut S, Hartke A, Giard J-C, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franceschini A et al (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara S, Shinkai H, Deutzmann R, Paulsson M, Timpl R (1988) Structure and distribution of N-linked oligosaccharide chains on various domains of mouse tumour laminin. Biochem J 252:453–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furukawa K, Roberts DD, Endo T, Kobata A (1989) Structural study of the sugar chains of human platelet thrombospondin. Arch Biochem Biophys 270:302–312

    Article  CAS  PubMed  Google Scholar 

  • Gold OG, Jordan HV, van Houte J (1975) The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch Oral Biol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  • Hanin A et al (2010) Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS ONE 5:e11879. doi:10.1371/journal.pone.0011879

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath RJ, Rock CO (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs 5:146–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 5:575–584

    Article  CAS  PubMed  Google Scholar 

  • Hufnagel M, Koch S, Creti R, Baldassarri L, Huebner J (2004) A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J Infect Dis 189:420–430. doi:10.1086/381150

    Article  CAS  PubMed  Google Scholar 

  • Jin J et al (2012) Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS ONE 7:e50777. doi:10.1371/journal.pone.0050777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665. doi:10.1073/pnas.1006451107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS (2009) An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr Microbiol 58:464–471. doi:10.1007/s00284-008-9345-z

    Article  CAS  PubMed  Google Scholar 

  • Koide N, Muramatsu T (1974) Endo-beta-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. Purification and properties of the enzyme from Diplococcus pneumoniae. J Biol Chem 249:4897–4904

    CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed Central  PubMed  Google Scholar 

  • Leboeuf C, Leblanc L, Auffray Y, Hartke A (2000) Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. J Bacteriol 182:5799–5806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leimena MM, Wels M, Bongers RS, Smid EJ, Zoetendal EG, Kleerebezem M (2012) Comparative analysis of Lactobacillus plantarum WCFS1 transcriptomes by using DNA microarray and next-generation sequencing technologies. Appl Environ Microbiol 78:4141–4148. doi:10.1128/AEM.00470-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindenstrauss AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF (2011) Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Syst Appl Microbiol 34:553–560. doi:10.1016/j.syapm.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Marchesini B, Bruttin A, Romailler N, Moreton RS, Stucchi C, Sozzi T (1992) Microbiological events during commercial meat fermentations. J Appl Bacteriol 73:203–209

    Article  CAS  PubMed  Google Scholar 

  • Metaxopoulos J, Samelis S, Papaedlli M (2001) Technological and microbiological evaluation of traditional processes as modified for the industrial manufacturing of dry fermented sausages in Greece. Ital J Food Sci 13:3–18

    CAS  Google Scholar 

  • Nallapareddy SR, Qin X, Weinstock GM, Hook M, Murray BE (2000) Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto-Arribas P, Sesena S, Poveda JM, Chicon R, Cabezas L, Palop L (2011) Enterococcus populations in artisanal Manchego cheese: biodiversity, technological and safety aspects. Food Microbiol 28:891–899. doi:10.1016/j.fm.2010.12.005

    Article  PubMed  Google Scholar 

  • Opsata M, Nes IF, Holo H (2010) Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 10:224. doi:10.1186/1471-2180-10-224

    Article  PubMed Central  PubMed  Google Scholar 

  • Patwa LG et al (2011) Chronic intestinal inflammation induces stress-response genes in commensal Escherichia coli. Gastroenterology 141(5):e1842–e1851. doi:10.1053/j.gastro.2011.06.064

    Article  Google Scholar 

  • Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP (2000) Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 21:510–515. doi:10.1086/501795

    Article  CAS  PubMed  Google Scholar 

  • Roberts G, Homer KA, Tarelli E, Philpott-Howard J, Devriese LA, Beighton D (2001) Distribution of endo-beta-N-acetylglucosaminidase amongst enterococci. J Med Microbiol 50:620–626

    CAS  PubMed  Google Scholar 

  • Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372. doi:10.1128/IAI.69.7.4366-4372.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steck N et al (2011) Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141:959–971. doi:10.1053/j.gastro.2011.05.035

    Article  CAS  PubMed  Google Scholar 

  • Sutrina SL, McGeary T, Bourne CA (2007) The phosphoenolpyruvate:sugar phosphotransferase system and biofilms in gram-positive bacteria. J Mol Microbiol Biotechnol 12:269–272. doi:10.1159/000099648

    Article  CAS  PubMed  Google Scholar 

  • Vebo HC, Snipen L, Nes IF, Brede DA (2009) The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS ONE 4:e7660. doi:10.1371/journal.pone.0007660

    Article  PubMed Central  PubMed  Google Scholar 

  • Vebo HC, Solheim M, Snipen L, Nes IF, Brede DA (2010) Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE 5:e12489. doi:10.1371/journal.pone.0012489

    Article  PubMed Central  PubMed  Google Scholar 

  • Ward DE, Ross RP, van der Weijden CC, Snoep JL, Claiborne A (1999) Catabolism of branched-chain alpha-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route. J Bacteriol 181:5433–5442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward DE, van Der Weijden CC, van Der Merwe MJ, Westerhoff HV, Claiborne A, Snoep JL (2000) Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J Bacteriol 182:3239–3246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehouse NL, Olson VM, Schwab CG, Chesbro WR, Cunningham KD, Lykos T (1994) Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. J Anim Sci 72:1335–1343

    CAS  PubMed  Google Scholar 

  • Wunderlich PF et al (1989) Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res 17:333–338

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sigrid Kisling (Chair for Biofunctionality of Food, Technische Universität München, Germany) for histology analysis of mouse tissue samples used in this study. We also thank the members of the National Gnotobiotic Rodent Resource Center (University of North Carolina, Chapel Hill, USA) for the generous support during the experiment. This work was supported by GRK 1482 of the German Research Foundation (DFG), NIH grants R01DK53247, P40 OD010995, P30 DK34987 and the Crohn’s and Colitis Foundation of America. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenstrauß, A.G., Ehrmann, M.A., Behr, J. et al. Transcriptome analysis of Enterococcus faecalis toward its adaption to surviving in the mouse intestinal tract. Arch Microbiol 196, 423–433 (2014). https://doi.org/10.1007/s00203-014-0982-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-0982-2

Keywords

Navigation