Skip to main content
Log in

Autotrophic CO2 fixation pathways in archaea (Crenarchaeota)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Representative autotrophic and thermophilic archaeal species of different families of Crenarchaeota were examined for key enzymes of the known autotrophic CO2 fixation pathways. Pyrobaculum islandicum (Thermoproteaceae) contained key enzymes of the reductive citric acid cycle. This finding is consistent with the operation of this pathway in the related Thermoproteus neutrophilus. Pyrodictium abyssi and Pyrodictium occultum (Pyrodictiaceae) contained ribulose 1,5-bisphosphate carboxylase, which was active in boiling water. Yet, phosphoribulokinase activity was not detectable. Operation of the Calvin cycle remains to be demonstrated. Ignicoccus islandicus and Ignicoccus pacificus (Desulfurococcaceae) contained pyruvate oxidoreductase as potential carboxylating enzyme, but apparently lacked key enzymes of known pathways; their mode of autotrophic CO2 fixation is at issue. Metallosphaera sedula, Acidianus ambivalens and Sulfolobus sp. strain VE6 (Sulfolobaceae) contained key enzymes of a 3-hydroxypropionate cycle. This finding is in line with the demonstration of acetyl-coenzyme A (CoA) and propionyl-CoA carboxylase activities in the related Acidianus brierleyi and Sulfolobus metallicus. Enzymes of central carbon metabolism in Metallosphaera sedula were studied in more detail. Enzyme activities of the 3-hydroxypropionate cycle were strongly up-regulated during autotrophic growth, supporting their role in CO2 fixation. However, formation of acetyl-CoA from succinyl-CoA could not be demonstrated, suggesting a modified pathway of acetyl-CoA regeneration. We conclude that Crenarchaeota exhibit a mosaic of three or possibly four autotrophic pathways. The distribution of the pathways so far correlates with the 16S-rRNA-based taxa of the Crenarchaeota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143

    Article  CAS  PubMed  Google Scholar 

  • Antranikian W, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152:1284–1287

    CAS  PubMed  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160:306–311

    CAS  Google Scholar 

  • Bergmeyer HU (1970) Methoden der enzymatischen Analyse, 2nd edn. Verlag Chemie, Weinheim

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brysch K, Schneider C, Fuchs G, Widdel F (1987) Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274

    CAS  Google Scholar 

  • Buchanan BB, Arnon DI (1990) A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53

    CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overneek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    CAS  PubMed  Google Scholar 

  • Burton NP, Williams TD, Norris PR (1999) Carboxylase genes of Sulfolobus metallicus. Arch Microbiol 172:349–353

    Article  CAS  PubMed  Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. Benjamin, New York

  • Danson MJ (1988) Archaebacteria: The comparative enzymology of their central metabolic pathways. Adv Microbial Physiol 29:165–231

    CAS  Google Scholar 

  • Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research, 3rd edn. Clarendon , Oxford

  • Eisenreich W, Strauss G, Werz U, Fuchs G, Bacher A (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 215:619–632

    CAS  Google Scholar 

  • Evans MC, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    CAS  PubMed  Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T (1999) Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic Archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274:5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci 99:984–989

    Article  PubMed  Google Scholar 

  • Friedrich CG, Bowien B, Friedrich B (1979) Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115:185–192

    CAS  Google Scholar 

  • Fuchs G (1989) Alternative pathways of autotrophic carbon dioxide fixation in autotrophic bacteria. In: Schlegel HG (ed) Biology of autotrophic bacteria, Science Tech , Madison, Wisconsin, pp 365–382

  • Fuchs G (1990) Alternatives to the Calvin cycle and the Krebs cycle in anaerobic bacteria: pathways with carbonylation chemistry. In: Hauska G, Thauer R (eds) The molecular basis of bacterial metabolism, Springer , Berlin Heidelberg New York, pp 13–20

  • Fuchs G (1994) Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. In: Drake HL (ed) Acetogenesis, Chapman and Hall, New York, pp 508–520

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    CAS  Google Scholar 

  • Gallagher S, Winston SE, Fuller SA, Hurell JGR (1997) Immunoblotting and immunodetection. In: Ausubel FM, Brent R, Kingston RE, et al (eds) Current protocols in molecular biology, Wiley, New York, 10.8.1–10.8.21

  • Hanson TE, Tabita FR (2001) A ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Herter S, Farfsing J, Gad´on N, Rieder C, Eisenreich W, Bacher A, Fuchs G (2001) Autotrophic CO2 fixation in Chloroflexus aurantiacus. Study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J Bacteriol 183:4305–4316

    Article  CAS  PubMed  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256

    CAS  Google Scholar 

  • Holo H, Sirevåg R (1986) Autotrophic growth and CO2 fixation in Chloroflexus aurantiacus. Arch Microbiol 145:173–180

    CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe) S surfaces: implications for the origin of life. Science 281:670–672

    Article  CAS  PubMed  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:1093–2100

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represents by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101

    CAS  Google Scholar 

  • Hügler M, Ménendez C, Schägger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410

    Article  Google Scholar 

  • Ishii M, Miyake T, Satoh T, Sugiyama H, Oshima Y, Kodama T, Igarashi Y (1997) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch Microbiol 166:368-371

    Article  Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola former Thiosulfatophilum. Arch Microbiol 128:239–241

    Google Scholar 

  • Ivanovsky RN, Krasilnikova EN, Fal YI (1993) A pathway of the autotrophic CO2 fixation in Chloroflexus aurantiacus. Arch Microbiol 159:257–264

    CAS  Google Scholar 

  • Jones WJ, Nagel DP, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177

    CAS  Google Scholar 

  • Kandler O, Stetter KO (1981) Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via the reductive carboxylic acid pathway. Zbl Bakt Hyg Abt I Org 2:111-121

    CAS  Google Scholar 

  • Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K (2001) Crystal structure of a novel-type archaeal Rubisco with pentagonal symmetry. Structure 9:473–481

    Article  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Venter JC (1997) The complete genome sequence of the hyperthermophilic sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    PubMed  Google Scholar 

  • Länge S, Scholtz R, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:77-83

    Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    CAS  PubMed  Google Scholar 

  • Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T (1999) Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 293:57–66

    Article  CAS  PubMed  Google Scholar 

  • Ménendez C, Bauer Z, Huber H, Gad´on N, Stetter KO, Fuchs G. (1999) Presence of acetyl-Coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for the operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    CAS  PubMed  Google Scholar 

  • Norris P, Nixon A, Hart A (1989) Acidophilic, mineral-oxidizing bacteria: the utilization of carbon dioxide with particular reference to autotrophy in Sulfolobus. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology, Elsevier, London, pp 24–43

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253

    Google Scholar 

  • Preuß A, Schauder R, Fuchs G, Stichler W (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z Naturforsch 44c:397–402

    Google Scholar 

  • Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol 26:261–300

    CAS  PubMed  Google Scholar 

  • Rajagopalan R, Altekar W (1994) Characterization and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. Eur J Biochem 221:863–869

    CAS  Google Scholar 

  • Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146:301–308

    Google Scholar 

  • Schäfer S, Götz M, Eisenreich W, Bacher A, Fuchs G (1989a) 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur J Biochem 184:151–156

    PubMed  Google Scholar 

  • Schäfer S, Paalme T, Vilu R, Fuchs G (1989b) 13C-NMR study of acetate assimilation in Thermoproteus neutrophilus. Eur J Biochem 186:695–700

    PubMed  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148:218–225

    CAS  Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol 141:198–203

    CAS  Google Scholar 

  • Stetter KO (1995) Microbial life in hyperthermal environments. Am Soc Microbiol News 61:285–290

    Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551

    CAS  Google Scholar 

  • Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643

    CAS  PubMed  Google Scholar 

  • Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 205:853–866

    CAS  PubMed  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    CAS  PubMed  Google Scholar 

  • Vorholt JA, Kunow J, Stetter KO, Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163:112–118

    Article  CAS  Google Scholar 

  • Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK (1997) Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167:19–23

    Article  CAS  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200-204

    PubMed  Google Scholar 

  • Watson GMF, Yu JP, Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic archaea. J Bacteriol 181:1569–1575

    CAS  PubMed  Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291

    CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, the Fonds der chemischen Industrie, Frankfurt, and the Land Baden-Württemberg (fellowship to M. H.). Thanks are due to Nasser Gad'on, Freiburg, for growing M. sedula cells, to Jan Farfsing, Freiburg, for initial work on M. sedula, and to A. Kletzin, Darmstadt, for a gift of A. ambivalens cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hügler, M., Huber, H., Stetter, K.O. et al. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179, 160–173 (2003). https://doi.org/10.1007/s00203-002-0512-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0512-5

Keywords

Navigation