Skip to main content
Log in

Influence of \(\text{ CF }_{3}\text{ H }\) and \(\text{ CCl }_{4}\) additives on acetylene detonation

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The influence of \(\text{ CF }_{3}\text{ H }\) and \(\text{ CCl }_{4}\) admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that \(\text{ CF }_{3}\text{ H }\) additive had no influence on the induction time. For \(\text{ CCl }_{4}\), a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene \(\text{ C }_{4}\text{ H }_{2}\) formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by \(\text{ CCl }_{4}\) pyrolysis, which interacts with acetylene and produces \(\text{ C }_{2}\text{ H }\) radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ISW:

Incident shock wave

RSW:

Reflected shock wave

ICCD:

Intensified charge-coupled device

References

  1. Hastie, J.W.: Molecular basis of flame inhibition. J. Res. Nat. Bur. Stand. 77A, 733–754 (1973)

    Article  Google Scholar 

  2. Shebeko, Yu.N., Azatyan, V.V., Bolodian, I.A., Kopylov, S.N., Zamishevski, E.D.: The influence of fluorinated hydrocarbons on the combustion of gaseous mixtures in a closed vessel. Combust. Flame 121, 542–547 (2000)

    Google Scholar 

  3. Zamanskii, V.M., Borisov, A.A.: Mechanism and promotion of self-ignition of promising propellants. In: Itogi Nauki. Ser. Kinet. Katal, VINITI, Moscow (1989) (in Russian)

  4. Babushok, V., Noto, T., Burgess, D.R.F., Hamins, A., Tsang, W.: Influence of CF\(_{3}\)I, CF\(_{3}\)Br and CF\(_{3}\)H on high-temperature combustion of methane. Combust. Flame 107, 351–367 (1996)

    Article  Google Scholar 

  5. Ivanov, B.A.: Physics of Acetylene Explosion. Khimiya, Moscow (1969) (in Russian)

  6. Emelianov, A., Eremin, A., Jander, H., Wagner, H.Gg.: Carbon condensation wave in C\(_{3}\)O\(_{2}\) and \(\text{ C }_{2}\text{ H }_{2}\) initiated by a shock wave. Proc. Combust. Inst. 33(1), 525–532 (2011)

  7. Golovastov, S., Baklanov, D., Golub, V., Volodin, V.: Inhibition of spontaneous decomposition of acetylene by hydrocarbon and hydrogen. Combust. Sci. Technol. 180(10–11), 1972–1986 (2008)

    Article  Google Scholar 

  8. Emelianov, A.V., Eremin, A.V., Fortov, V.E.: Formation of a detonation wave in the thermal decomposition of acetylene. JETP Lett. 92(2), 97–101 (2010)

    Article  Google Scholar 

  9. Eremin, A.: Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Prog. Energy Combust. Sci. 38, 1–40 (2012)

    Article  Google Scholar 

  10. Warnatz, J.: Rate coefficients in the C/H/O system, chap. 5. In: Gardiner Jr. W.C. (ed.) Combustion Chemistry. Springer, Berlin (1984)

  11. Tsang, W., Hampson, R.F.: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data 15, 1087–1279 (1986)

    Article  Google Scholar 

  12. Duran, R.P., Amorebieta, V.T., Colussi, A.J.: Is the homogeneous thermal dimerization of acetylene a free-radical chain reaction? Kinetic and thermochemical analysis. J. Phys. Chem. 92(3), 636–640 (1988)

    Article  Google Scholar 

  13. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411–429 (1992)

    Google Scholar 

  14. Eiteneer, B., Frenklach, M.: Experimental and modeling study of shock-tube oxidation of acetylene. Int J. Chem. Kinet. 35, 391–414 (2003)

    Article  Google Scholar 

  15. Wu, C.H., Singh, H.J., Kern, R.D.: Pyrolysis of acetylene behind reflected shock waves. Int. J. Chem. Kinet. 19, 975–996 (1987)

    Article  Google Scholar 

  16. Kumaran, S.S., Su, M.-C., Lim, K.P., Michael, J.V., Wagner, A.F., Harding, L.B.: Ab initio calculations and three different applications of unimolecular rate theory for the dissociations of CCl\(_{4}\), CFCl\(_{3}\), CF\(_{2}\)Cl\(_{2}\), and CF\(_{3}\)Cl. J. Phys. Chem. 100, 7541–7549 (1996)

    Article  Google Scholar 

  17. Seetula, J.A.: Kinetics of the R+Cl\(_2\), (R = CH\(_2\)Cl, CHBrCl, CCl\(_3\) and CH\(_3\)CCl\(_2\)) reactions. An ab initio study of the transition states. J. Chem. Soc. Farad. Trans. 94, 3561–3567 (1998)

    Article  Google Scholar 

  18. Huybrechts, G., Theys, I., Van Mele, B.: Pyrolysis of hexachloroethane in the gas phase: computer aided kinetic study. Int. J. Chem. Kinet. 28, 755–761 (1996)

    Google Scholar 

  19. Weissman, M., Benson, S.W.: Mechanism of pyrolysis of C\(_{2}\)Cl\(_{6}\). Int. J. Chem. Kinet. 12, 403–415 (1980)

    Article  Google Scholar 

  20. Dusoleil, S., Goldfinger, P., Mahieu-Van Der Auwera, A.M., Martens, G., Van Der Auwera, D.: Elementary rate constants in atomic chlorination reactions. Part 1—experiments in intermittent light. Trans. Faraday Soc. 57, 2197–2209 (1961)

    Article  Google Scholar 

  21. Kumaran, S.S., Su, M.-C., Lim, K.P., Michael, J.V., Klippenstein, S.J., DiFelice, J., Mudipalli, P.S., Kiefer, J.H., Dixon, D.A., Peterson, K.A.: Experiments and theory on the thermal decomposition of CHCl\(_{3}\) and the reactions of CCl\(_{2}\). J. Phys. Chem. A 101, 8653–8661 (1997)

  22. Garrett, B.C., Truhlar, D.G.: Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with applications to hydrogen atom transfer reactions. J. Am. Chem. Soc. 101, 4534–4548 (1979)

    Article  Google Scholar 

  23. Mayer, S.W., Schieler, L., Johnston, H.S.: Computation of high-temperature rate constants for bimolecular reactions of combustion products. Symp. Int. Combust. Proc. 11, 837–844 (1967)

    Article  Google Scholar 

  24. Kovács, T., Turányi, T., Főglein, K., Szépvölgyi, J.: Kinetic modeling of the decomposition of carbon tetrachloride in thermal plasma. Plasma Chem. Plasma Process. 25(2), 109–119 (2005)

    Article  Google Scholar 

  25. Zabel, V.F.: Der Thermische zerfall von chlorierten athylenen in der gasphase I. Tetrachloroathylen und trichloroathylen. Ber. Bunsenges. Phys. Chem. 78, 232–240 (1974)

    Google Scholar 

  26. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J.: Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling, vol. 97–4, pp. 1–266. JPL Publication, USA (1997)

  27. Baulch, D.L., Duxbury, J., Grant, S.J., Montague, D.C.: Evaluated kinetic data for high temperature reactions. Volume 4. Homogeneous gas phase reactions of halogen- and cyanide-containing species. J Phys Chem Ref Data 10(Suppl 1) (1981)

  28. Krestinin, A.V., Moravsky, A.P., Tesner, P.A.: Kinetic model of formation of fullerenes C\(_{60}\) and C\(_{70}\) in condensation of carbon vapor. Chem. Phys. Rep. 17, 1687–1707 (1998)

    Google Scholar 

  29. Weissman, M., Benson, S.W.: Pyrolysis of methyl chloride, a pathway in the chlorine-catalyzed polymerization of methane. Int. J. Chem. Kinet. 16, 307–333 (1984)

    Article  Google Scholar 

  30. Louis, F., Gonzalez, C.A., Sawerysyn, J.P.: Direct combined ab initio/transition state theory study of the kinetics of the abstraction reactions of halogenated methanes with hydrogen atoms. J. Phys. Chem. A 108, 10586–10593 (2004)

    Article  Google Scholar 

  31. Kiefer, J.H., Sidhu, S.S., Kern, R.D., Xie, K., Chen, H., Harding, L.B.: The homogeneous pyrolysis of acetylene. 2. The high temperature radical chain mechanisms. Comb. Sci. Technol. 82, 101–130 (1992)

    Article  Google Scholar 

  32. Raman, A., Sivaramakrishnan, R., Brezinsky, K.: Role of diacetylene in soot formation. In: Sarofim, A.F., Wang, H., Bockhorn, H., D’Anna, A. (eds.) Combustion Generated Fine Carbonaceous Particles. KIT Scientific Publishing, Karlsruhe (2009)

    Google Scholar 

  33. NIST Chemical Kinetics Database. http://kinetics.nist.gov

Download references

Acknowledgments

The authors thank Prof. H. Gg. Wagner and Dr. H. Jander (Göttingen University) for fruitful discussions and Dr. J. Deppe (LaVision GMbH) for help with the ICCD camera measurements. The support from DFG, RFBR and the Russian Academy of Sciences (Program P-12) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Drakon.

Additional information

Communicated by A.K. Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drakon, A., Emelianov, A. & Eremin, A. Influence of \(\text{ CF }_{3}\text{ H }\) and \(\text{ CCl }_{4}\) additives on acetylene detonation. Shock Waves 24, 231–237 (2014). https://doi.org/10.1007/s00193-013-0453-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0453-8

Keywords

Navigation