Skip to main content
Log in

Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ∼600 m in a SW–NE direction with chimneys occurring over a ∼145-m depth interval, between ∼1,690 and 1,545 m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2–3 m in height, with some reaching 6–7 m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35 years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2–3 m thick. Two main types of chimney predominate: Cu-rich (up to 28.5 wt.% Cu) and, more commonly, Zn-rich (up to 43.8 wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91 ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (≤0.5 m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (≤300°C), acidic (pH ≥ 2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (≤122°C), more acidic (pH 1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3 years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206 mM/kg at the Cone site); high CO2/3He; negative δD and δ18OH2O for vent fluids; negative δ34S for sulfides (to −4.6‰), sulfur (to −10.2‰), and δ15N2 (to −3.5‰); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu + Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of “magmatic” mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (∼2.5 km long), narrow (∼300-m diameter) “pipes,” consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Arribas A Jr. (1995) Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineralogical Association of Canada, Short Course Series 23, pp 419–454

  • Baker ET, Feely RA, de Ronde CEJ, Massoth GJ, Wright IC (2003) Submarine hydrothermal venting on the southern Kermadec volcanic arc front (offshore New Zealand): location and extent of particle plume signatures. Geological Society Special Publication, pp 141–161

  • Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K-I, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res 113:B08S09. doi:10.1029/2007jb005423

    Article  Google Scholar 

  • Bevins RE, Kokelaar BP, Dunkley PN (1984) Petrology and geochemistry of lower to middle Ordovician igneous rocks in Wales: a volcanic arc to marginal basin transition. Proc Geol Assoc 95:337–347. doi:10.1016/s0016-7878(84)80064-4

    Article  Google Scholar 

  • Butterfield DA, Seyfried WEJ, Lilley MD (2003) Composition and evolution of hydrothermal fluid chemistry, mass and energy flux. In: Halbach PE, Tunnicliffe V, Hein J (eds) Marine hydrothermal systems. Dahlem University Press, Berlin, pp 123–161

    Google Scholar 

  • Butterfield DA, Roe KK, Lilley MD, Huber JA, Baross JA, Embley RW, Massoth GJ (2004) Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. In: Wilcock WSD, Kelley DS, Baross JA, DeLong E, Cary C (eds) Geophysical Monograph Series, American Geophysical Union, pp 269–289

  • Chadwick WW, Cashman KV, Embley RW, Matsumoto H, Dziak RP, de Ronde CEJ, Lau TK, Deardorff ND, Merle SG (2008) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res 113:B08S10. doi:10.1029/2007jb005215

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  Google Scholar 

  • de Ronde CEJ (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermal system and associated VMS deposits: potential for magmatic contributions. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineralogical Association of Canada, Short Course Series 23, pp 479–509

  • de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, Greene RR (2001) Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett 193:359–369

    Article  Google Scholar 

  • de Ronde CEJ, Faure K, Bray CJ, Chappell DA, Wright IC (2003a) Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner Deposita 38:217–233

    Google Scholar 

  • de Ronde CEJ, Massoth GJ, Barker ET, Lupton JE (2003b) Submarine hydrothermal venting related to volcanic arcs. In: Simmons SF, Graham I (eds) Society of Economic Geologists, Inc., Special Publication, pp 91–110

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic–hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100:1097–1133

    Article  Google Scholar 

  • de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Sparks RJ, Bannister SC, Reyners ME, Walker SL, Greene RR, Ishibashi J, Faure K, Resing JA, Lebon GT (2007) Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting. Geochem Geophys Geosyst 8:Q07007

    Article  Google Scholar 

  • de Ronde CEJ (2006) Mineralization associated with submarine volcanoes of the southern Kermadec arc, New Zealand. Australasian Institute of Mining and Metallurgy Monograph 25, pp 333–338

  • Ditchburn RG, Graham IJ, Barry BJ, de Ronde CEJ (2004) Uranium series disequilibrium dating of black smoker chimneys. New Zealand Science Review 61:54–56

    Google Scholar 

  • Dziak RP, Haxel JH, Matsumoto H, Lau TK, Merle SG, de Ronde CEJ, Embley RW, Mellinger DK (2008) Observations of regional seismicity and local harmonic tremor at Brothers volcano, south Kermadec arc, using an ocean bottom hydrophone array. Journal of Geophysical Research 113:B08S04. doi:10.1029/2007jb005533

    Article  Google Scholar 

  • Embley RW, Chadwick WW (1994) Volcanic and hydrothermal processes associated with a recent phase of sea-floor spreading at the Northern Cleft Segment—Juan-De-Fuca Ridge. J Geophys Res-Sol Ea 99:4741–4760

    Article  Google Scholar 

  • Embley RW, Chadwick WW, Baker ET, Butterfield DA, Resing JA, de Ronde CEJ, Tunnicliffe V, Lupton JE, Juniper SK, Rubin KH, Stern RJ, Lebon GT, Nakamura K, Merle SG, Hein JR, Wiens DA, Tamura Y (2006) Long-term eruptive activity at a submarine arc volcano. Nature 441:494–497

    Article  Google Scholar 

  • Gamo T, Okamura K, Charlou JL, Urabe T, Auzende JM, Ishibashi J, Shitashima K, Chiba H (1997) Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology 25:139–142

    Article  Google Scholar 

  • German CR, Von Damm KL (2003) Hydrothermal processes. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 181–222

    Chapter  Google Scholar 

  • Giggenbach WF (1992a) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. In: Kharaka YF, Maest AS (eds) Water–rock interaction: Proceedings WRI-7, vols 1 and 2. Balkema, Rotterdam, pp 873–878

    Google Scholar 

  • Giggenbach WF (1992b) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol 87:1927–1944

    Google Scholar 

  • Giggenbach WF (1992c) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510. doi:10.1016/0012-821x(92)90127-h

    Article  Google Scholar 

  • Graham IJ, Reyes AG, Wright IC, Peckett KM, Smith IEM, Arculus RJ (2008) Structure and petrology of newly discovered volcanic centers in the northern Kermadec–southern Tofua arc, South Pacific Ocean. J Geophys Res 113:B08S02. doi:10.1029/2007jb005453

    Article  Google Scholar 

  • Haase KA, Stroncik N, Garbe-Schnoberg D, Stoffers P (2006) Formation of island arc dacite magmas by extreme crystal fractionation: an example from Brothers Seamount, Kermadec island arc (SW Pacific). J Volcanol Geoth Res 152:316–330

    Article  Google Scholar 

  • Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM, Shanks WC III, Lutz RA, Grebmeier JM, Carbotte S, Wright D, McLaughlin E, Smith M, Beedle N, Olson E (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45′–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet Sci Lett 119:85–101

    Article  Google Scholar 

  • Hedenquist JW, Aoki M, Shinohara H (1994) Flux of volatiles and ore-forming metals from the magmatic–hydrothermal system of Satsuma Iwojima volcano. Geology 22:585–588

    Article  Google Scholar 

  • Herrmann F, Grambole D (1995) The new Rossendorf nuclear microprobe. Nucl Instrum Meth B 104:26–30

    Article  Google Scholar 

  • Hulston JR, Lupton JE (1996) Helium isotope studies of geothermal fields in the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 74:297–321

    Article  Google Scholar 

  • Kusakabe M, Robinson BW (1977) Oxygen and sulfur isotope equilibria in the BaSO4–HSO4–H2O system from 110 to 350°C and applications. Geochim Cosmochim Acta 41:1033–1040

    Article  Google Scholar 

  • Lahr J (2005) A study of Brothers blacksmoker chimneys: reflected light microscopy results. Undergraduate Report, University of Berlin, p 18

  • Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881. doi:10.1038/Nature01569

    Article  Google Scholar 

  • Lupton J (1998) Hydrothermal helium plumes in the Pacific Ocean. J Geophys Res Oceans 103:15853–15868

    Article  Google Scholar 

  • Lupton J, Butterfield D, Lilley M, Evans L, Nakamura KI, Chadwick W, Resing J, Embley R, Olson E, Proskurowski G, Baker E, de Ronde C, Roe K, Greene R, Lebon G, Young C (2006) Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochem Geophys Geosyt 7:Q08007

    Article  Google Scholar 

  • Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Massoth G, Christenson B, K-i N, Schmidt M (2008) Venting of a separate CO2-rich gas phase from submarine arc volcanoes: examples from the Mariana and Tonga-Kermadec arcs. J Geophys Res 113:B08S12. doi:10.1029/2007jb005467

    Article  Google Scholar 

  • Marty B, Dauphas N (2003) The nitrogen record of crust–mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410. doi:10.1016/S0012-821x(02)01108-1

    Article  Google Scholar 

  • Massoth G, Baker E, Worthington T, Lupton J, de Ronde C, Arculus R, Walker S, Nakamura K, Ishibashi J, Stoffers P, Resing J, Greene R, Lebon G (2007) Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochem Geophys Geosyst 8:Q11008. doi:10.1029/2007gc001675

    Article  Google Scholar 

  • Massoth GJ, de Ronde CEJ, Lupton JE, Feely RA, Baker ET, Lebon GT, Maenner SM (2003) Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc (New Zealand). Geol Soc Spec Publ 219:119–139

    Article  Google Scholar 

  • Mortlock RA, Froelich PN, Feely RA, Massoth GJ, Butterfield DA, Lupton JE (1993) Silica and germanium in Pacific Ocean hydrothermal vents and plumes. Earth Planet Sci Lett 119:365–378. doi:10.1016/0012-821x(93)90144-x

    Article  Google Scholar 

  • Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 8:37–49. doi:10.1111/J.1462-2920.2005.00884.X

    Article  Google Scholar 

  • Normark WR, Morton JL, Bischoff JL, Brett R, Robin T, Holcomb RT, Kappel ES, Koski RA, Shanks III SL, Slack WC, Von Damm KL, Zierenburg RA (1986) Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: Preliminary observations from the submersible Alvin, Geology 14:823–827.

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Ohmoto H, Lasaga A (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Patterson DB, Farley KA, McInnes BIA (1997) Helium isotopic composition of the Tabar–Lihir–Tanga–Feni island arc, Papua New Guinea. Geochim Cosmochim Acta 61:2485–2496

    Article  Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulfur isotopic composition of ocean water sulfate. Geochim Cosmochim Acta 42:377–382

    Article  Google Scholar 

  • Resing JA, Lebon G, Baker ET, Lupton JE, Embley RW, Massoth GJ, Chadwick WW Jr, de Ronde CEJ (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ Geol Bull Soc Econ Geol 102:1047–1061

    Article  Google Scholar 

  • Rimstidt JD (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 487–516

    Google Scholar 

  • Saegusa S, Tsunogai U, Nakagawa F, Kaneko S (2006) Development of a multibottle gas-tight fluid sampler WHATS II for Japanese submersibles/ROVs. Geofluids 6:234–240. doi:10.1111/J.1468-8123.2006.00143.X

    Google Scholar 

  • Seal RR II, Alpers CN, Rye RO (2000) Stable isotopes systematics of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Mineralogical Society of America, Washington, pp 541–602

    Google Scholar 

  • Shanks WC III, Bohlke JK, Seal RR II (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. Geophys Monogr 91:194–221

    Google Scholar 

  • Sohn RA, Barclay AH, Webb SC (2004) Microearthquake patterns following the 1998 eruption of Axial Volcano, Juan de Fuca Ridge: mechanical relaxation and thermal strain. J Geophys Res-Sol Ea 109:B01101. doi:10.1029/2003jb002499

    Article  Google Scholar 

  • Stott MB, Saito JA, Crowe MA, Dunfield PF, Hou S, Nakasone E, Daughney CJ, Smirnova AV, Mountain BW, Takai K, Alam M (2008) Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. J Geophys Res 113:B08S06. doi:10.1029/2007jb005477

    Article  Google Scholar 

  • Takai K, Nunoura T, Ishibashi JI, Lupton J, Suzuki R, Hamasaki H, Ueno Y, Kawagucci S, Gamo T, Suzuki Y, Hirayama H, Horikoshi K (2008) Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J Geophys Res-Biogeo 113:G02031. doi:10.1029/2007jg000636

    Article  Google Scholar 

  • Takai K, Nunoura T, Horikoshi K, Shibuya T, Nakamura K, Suzuki Y, Stott M, Massoth GJ, Christenson BW, de Ronde CEJ, Butterfield DA, Ishibashi J, Lupton JE, Evans LJ (2009) Variability in microbial communities in black smoker chimneys at the NW Caldera Vent Field, Brothers Volcano, Kermadec Arc. Geomicrobiol J 26:552–569. doi:10.1080/01490450903304949

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2220

    Article  Google Scholar 

  • Von Damm KL, Bischoff JL, Rosenbauer RJ (1991) Quartz solubility in hydrothermal seawater; an experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions. Am J Sci 291:977–1007. doi:10.2475/ajs.291.10.977

    Article  Google Scholar 

  • Von Damm KL (1995) Controls of the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington, pp 222–247

    Google Scholar 

  • West M, Menke W, Tolstoy M, Webb S, Sohn R (2001) Magma storage beneath axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413:833–836

    Article  Google Scholar 

  • Westrich HR, Stockman HW, Eichelberger JC (1988) Degassing of rhyolitic magma during ascent and emplacement. J Geophys Res 93:6503–6512

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) 100th Anniversary Special Paper: Vapor transport of metals and the formation of magmatic–hydrothermal ore deposits. Econ Geol 100:1287–1312. doi:10.2113/gsecongeo.100.7.1287

    Article  Google Scholar 

  • Wright I, Worthington T, Gamble J (2006) New multibeam mapping and geochemistry of the 30°–35° S sector, and overview, of southern Kermadec Arc volcanism. J Volcanol Geotherm Res 149:263–296. doi:10.1016/j.jvolgeores.2005.03.021

    Article  Google Scholar 

  • Wright IC, Gamble JA (1999) Southern Kermadec submarine caldera arc volcanoes (SW Pacific): caldera formation by effusive and pyroclastic eruption. Mar Geol 161:207–227

    Article  Google Scholar 

  • Wysoczanski RJ, Wright IC, Gamble JA, Hauri EH, Luhr JF, Eggins SM, Handler MR (2006) Volatile contents of Kermadec Arc–Havre Trough pillow glasses: fingerprinting slab-derived aqueous fluids in the mantle sources of arc and back-arc lavas. J Volcanol Geotherm Res 152:51–73

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge discussions with Agnes Reyes (GNS Science) on petrography and hydrothermal systems in general. Ashley Rowden (NIWA) provided information on the animals present at Brothers, while Ian Wright (NIWA) provided the bathymetric data that allowed Susan Merle (NOAA/PMEL) to create Figs. 2 and 3. We thank the captains and members of the crew of the R/V Yokosuka and R/V Ka’imikai-o-Kanaloa for safe handling of the ships and equipment, and the pilots of Shinkai 6500 and Pisces V for enabling diverse sampling to be accomplished. Julia Vodanovich, Andrew Gray, and Kitty Higbee also created some of the figures. The PIXE studies were funded by the AIM (RITA Contract #025646) Programme. This research was funded by Foundation for Research Science and Technology (FRST) contract C05X0406. We acknowledge reviews made by Bruce Gemmell, Sven Petersen, Fernando Tornos, and Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornel E. J. de Ronde.

Additional information

Editorial handling: F. Tornos

Revised manuscript, after review, for Mineralium Deposita special issue “Key issues and Controversies in the Geological Setting and Genesis of Volcanic-hosted Massive Sulfide (VMS) deposits,” 23 February 2011.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix I

(DOC 28 KB)

Appendix II

(XLS 66 KB)

Appendix III

(DOC 1.41 MB)

ESM Table 1

(XLS 18.5 KB)

ESM Table 2

(DOC 10 KB)

ESM Table 3

(DOC 23 KB)

ESM Table 4

(DOC 40.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Ronde, C.E.J., Massoth, G.J., Butterfield, D.A. et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner Deposita 46, 541–584 (2011). https://doi.org/10.1007/s00126-011-0345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0345-8

Keywords

Navigation