Skip to main content
Log in

Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Because organellar genomes are often uniparentally inherited, chloroplast (cp) and mitochondrial (mt) DNA polymorphisms have become the markers of choice for investigating evolutionary issues such as sex-biased dispersal and the directionality of introgression. To the extent that organellar inheritance is strictly maternal, it has also been suggested that the insertion of transgenes into either the chloroplast or mitochondrial genomes would reduce the likelihood of gene escape via pollen flow from crop fields into wild plant populations. In this paper we describe the adaptation of chloroplast simple sequence repeats (cpSSRs) for use in the Compositae. This work resulted in the identification of 12 loci that are variable across the family, seven of which were further shown to be highly polymorphic within sunflower (Helianthus annuus). We then used these markers, along with a novel mtDNA restriction fragment length polymorphism (RFLP), to investigate the mode of organellar inheritance in a series of experimental crosses designed to mimic the initial stages of crop-wild hybridization in sunflower. Although we cannot rule out the possibility of extremely rare paternal transmission, our results provide the best evidence to date of strict maternal organellar inheritance in sunflower, suggesting that organellar gene containment may be a viable strategy in sunflower. Moreover, the portability of these markers suggests that they will provide a ready source of cpDNA polymorphisms for use in evolutionary studies across the Compositae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arias DM, Rieseberg LH (1994) Gene flow between cultivated and wild sunflowers. Theor Appl Genet 89:655–660

    Article  PubMed  CAS  Google Scholar 

  • Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, Ellisens WJ, Moore G, Wolfe AD, dePamphilis CW (2000) Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc Natl Acad Sci USA 97:13166–13171

    Article  PubMed  CAS  Google Scholar 

  • Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift—equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627

    PubMed  Google Scholar 

  • Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, McNicoll J, Ramsay G, Meyer RC (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    Article  CAS  Google Scholar 

  • Burke JM, Rieseberg LH (2003) Fitness effects of transgenic disease resistance in sunflowers. Science 300:1250

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Gardner KA, Rieseberg LH (2002a) The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States. Am J Bot 89:1550–1552

    Article  PubMed  Google Scholar 

  • Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002b) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    PubMed  CAS  Google Scholar 

  • Chamberlain D, Stewart NC (1999) Transplastomics and transgene escape. Nat Biotechnol 17:330–331

    Article  PubMed  CAS  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • Edwards-Burke MA, Hamrick JL, Price RA (1997) Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). Am J Bot 84:879–886

    Article  PubMed  CAS  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366

    Article  PubMed  CAS  Google Scholar 

  • Haygood R, Ives AR, Andow DA (2004) Population genetics of transgene containment. Ecol Lett 7:213–220

    Article  Google Scholar 

  • Heywood VH (1978) Flowering plants of the world. Mayflower Books, New York

    Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci USA 101:9710–9715

    Article  Google Scholar 

  • Huang, CY, Ayliffe, MA, Timmis JN (2004) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  Google Scholar 

  • Kesseli RV, Michelmore RW (1997) The Compositae: systematically fascinating but specifically neglected, In: Paterson AH (ed) Genome mapping in plants RG Landes, Georgetown, pp 179–191

    Google Scholar 

  • Linder CR, Taha I, Seiler GJ, Snow AA, Rieseberg LH (1998) Long-term introgression of crop genes into wild sunflower populations. Theor Appl Genet 96:339–347

    Article  CAS  Google Scholar 

  • McCauley DE (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba. Implication for studies of gene flow in plants. Proc Natl Acad Sci USA 91:8127–8131

    Article  PubMed  CAS  Google Scholar 

  • Milligan BG (1992) Is organelle DNA strictly maternally inherited? Power analysis of a binomial distribution. Am J Bot 79:1325–1328

    Article  CAS  Google Scholar 

  • Powell W, Morgante M (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Razoriteleva EK, Beletsky YD, Zhdanov YA (1970) The genetic nature of mutation induced by N-nitroso-N-methylurea in sunflower. I. The variegated plants. Genetika 6:102–107

    CAS  Google Scholar 

  • Rieseberg LH, Seiler GJ (1990) Molecular evidence and the origin and development of the domesticated sunflower (Helianthus annuus, Asteraceae). Econ Bot 44[Suppl 3]:79–91

    Article  Google Scholar 

  • Rieseberg LH, Beckstrom-Sternberg SM, Liston A, Arias DM (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76

    Article  Google Scholar 

  • Rieseberg LH, Van Fossen C, Arias D, Carter RL (1994) Cytoplasmic male-sterility in sunflower—origin, inheritance, and frequency in natural populations. J Hered 85:233–238

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Smith SE (1989) Biparental inheritance of organelles and its implications for crop improvement. Plant Breed Rev 6:361–393

    Google Scholar 

  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13:279–286

    Article  Google Scholar 

  • Stewart CN, Prakash CS (1998) Chloroplast-transgenic plants are not a gene flow panacea. Nat Biotechnol 16:401

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt RE, Petty A, McKinnon GE (2004) Maternal inheritance of mitochondria in Eucalyptus globulus. J Hered 95:353–355

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Welch ME, Rieseberg LH (2002) Patterns of genetic variation suggest a single, ancient origin for the diploid hybrid species Helianthus paradoxus. Evolution 56:2126–2137

    PubMed  CAS  Google Scholar 

  • Whitton J, Wolf DE, Arias DM, Snow AA, Rieseberg LH (1997) The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridization. Theor Appl Genet 95:33–40

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mark Chapman, Catherine Pashley, Natasha Sherman, Jessica Wenzler, and two anonymous reviewers for comments on an earlier version of this manuscript. Tamara Berthel, Chris Buckner, Jonathan Ertelt, Ben Stephens, and Jessica Wenzler provided assistance in the greenhouse and/or laboratory. This work was supported by grants to JMB from the United States Department of Agriculture (nos. 03-39210-13958 and 03-35300-13104) and the National Science Foundation (DBI-0332411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Burke.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wills, D.M., Hester, M.L., Liu, A. et al. Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus . Theor Appl Genet 110, 941–947 (2005). https://doi.org/10.1007/s00122-004-1914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1914-3

Keywords

Navigation