Skip to main content
Log in

Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A collection of structurally complex and chemically diverse small molecules is a useful tool to explore cell circuitry. In this article, we have reported the two step synthesis of diverse spirooxindoles. The key reaction to assemble the spirooxindole core is a Lewis acid catalyzed three component coupling. The final library of compounds was then analyzed for their cytotoxic activity against U87 human glioma cells. It is noteworthy to mention that this is the first report on the pharmaceutical evaluation of such compounds. Although the activity is moderate, it opens the door for new chemical modifications of spirooxindoles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  • Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo(2H)1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520

    Article  CAS  Google Scholar 

  • Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR (2002) Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Org Lett 4:4399. doi:10.1021/ol0266976

    Article  PubMed  CAS  Google Scholar 

  • Cornils B, Herrmann WA (1998) Aqueous phase organometallic catalysis—concepts and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Cui CB, Kakeya H, Osada H (1996a) Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J Antibiot 49:832

    Article  PubMed  CAS  Google Scholar 

  • Cui CB, Kakeya H, Osada H (1996b) Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J Antibiot 49:534–540

    Article  PubMed  CAS  Google Scholar 

  • DeSimone RW, Mitchell KS, Currie SA, Darrow JW, Pippin DA (2004) Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 7:473–493

    Article  PubMed  CAS  Google Scholar 

  • Elguero J, Goya P, Jagerovic N, Silva AMS (2002) Pyrazoles as drugs: facts and fantasies. Targets Heterocycl Syst 6:52–98

    CAS  Google Scholar 

  • Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspiration for the development of potential therapeutic agents. Angew Chem Int Ed 46:8748. doi:10.1002/anie.200701342

    Article  CAS  Google Scholar 

  • Haimov A, Neumann R (2002) Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem Commun 21:876–877. doi:10.1039/b200559j

    Article  Google Scholar 

  • Hansch C, Steward AR, Iwasa J, Deutsh EW (1965) The use of a hydrophobic bonding constant for structure–activity correlations. Mol Pharmacol 1:207. doi:10.1124/mol.1.3.205

    Google Scholar 

  • Jain SC, Kumar R, Goswami R, Pandey MK, Khurana S, Rohtagi L, Gyanda K (2005) Synthesis of novel non-isoprenoid phenolic acids and 3-alkylpyridines. Pure Appl Chem 77:185–193. doi:10.1351/pac200577010185

    Article  CAS  Google Scholar 

  • Joshi KC, Jain R, Sharma K (1988) J Indian Chem Soc 115:202

    Google Scholar 

  • Kang T-H, Matsumoto K, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H (2002) Pteropodine and isopteropodine positively modulate the function of rat muscarinic M(1) and 5-HT(2) receptors expressed in Xenopus oocyte. Eur J Pharmacol 444:39–45

    Article  PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:37

    Google Scholar 

  • Kidwai M, Jain A, Bhardwaj S (2012a) Magnetic nanoparticles catalyzed synthesis of diverse N-heterocycles. Mol Divers 16:121–128. doi:10.1007/s11030-011-9336-z

    Article  PubMed  CAS  Google Scholar 

  • Kidwai M, Jain A, Sharma A, Kuhad RC (2012b) First time reported enzymatic synthesis of new series of quinoxalines—A green approach. J Mol Catal B Enzym 74:236–240. doi:10.1016/j.molcatb.2011.11.002

    Article  CAS  Google Scholar 

  • Konkoy CS, Fick DB, Cai SX, Lan NC, Keana JFW (2000) PCT Int. Appl.WO0075123. Chem Abstr 2001(134):29313a

    Google Scholar 

  • Kubo I, Muroi H, Himejima M (1993) Structure–antibacterial activity relationships of anarcadic acids. J Agric Food Chem 41:1016–1019

    Article  CAS  Google Scholar 

  • Kulkarni SK, Kaul PN (1980) Substances of marine origin affecting pentobarbital pharmacokinetics. Indian J Exp Biol 13:270–272

    Google Scholar 

  • Leitner W (2002) Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res 35:746–756. doi:10.1021/ar010070q

    Article  PubMed  CAS  Google Scholar 

  • Marina O, Shibinskaya SA, Lyakhov AV, Mazepa SA, Andronati AV, Turov NM, Zholobak NYS (2010) Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo[2,3-b]quinoxalines. Eur J Med Chem 45:1237–1243. doi:10.1016/j.ejmech.2009.12.014

    Article  Google Scholar 

  • Nandakumar A, Thirumurugan P, Perumal PT, Vembu P, Ponnuswamy MN, Ramesh P (2010) One-pot multicomponent synthesis and anti-microbial evaluation of 2′-(indol-3-yl)-2-oxospiro(indoline-3,4′-pyran) derivatives. Bioorg Med Chem Lett 20:4252–4258. doi:10.1016/j.bmcl.2010.05.025

    Article  PubMed  CAS  Google Scholar 

  • Patchett AA, Nargund RP (2000) Section IV. Topics in drug design and discovery. Annu Rep Med Chem 35:289–298. doi:0065-7743/00

    Article  CAS  Google Scholar 

  • Penning TD, Talley JJ, Bertanshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee IF, Malecha JW, Miyashiro JM, Roger RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins EW, Seibert K, Veenbuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib). J Med Chem 40:1347–1365

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Silva WSJ, Alvi KA, De Silva KTD (1987) Nb-demethylalstophylline oxindole, an oxindole alkaloid from the leaves of Alstonia macrophylla. Phytochemistry 26:865

    Article  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis discovery. Science 287:1964–1969. doi:10.1126/science.287.5460.1964

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RA (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407. doi:10.1039/B107270F

    Article  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267. doi:10.1039/b418069k

    Article  CAS  Google Scholar 

  • Skommer J, Wlodkowic D, M€att€o M, Eray M, Pelkonen J (2006) HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leuk Res 30:322–331

    Article  PubMed  CAS  Google Scholar 

  • Togo H, Lida S (2006) Synthetic use of molecular iodine for organic synthesis. Synlett 14:2159–2176. doi:10.1055/s-2006-950405

    Article  Google Scholar 

  • Wang X, Quan Z, Zhang Z (2007) Michael additions of dihydropyrimidines and 2-amino-1,3,4-thiadiazoles to a,b-ethylenic compounds: using polyethylene glycols as a green reaction media. Tetrahedron 63:8227–8233. doi:10.1016/j.tet.2007.05.108

    Article  CAS  Google Scholar 

  • Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. Acc Chem Res 36:127–139. doi:10.1021/ar020229e

    Article  PubMed  CAS  Google Scholar 

  • Yanagida S, Takahashi K, Okahama M (1978) Metal-ion complexation of noncyclic poly(oxyethylene) derivatives. II. PMR studies of the complexation with alkali and alkaline earth metal cations. Bull Chem Soc Jpn 51:1294–1299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author (A. Jain) is thankful to UGC for providing senior research fellowship. M. Kidwai is grateful to the University of Delhi for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazaahir Kidwai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidwai, M., Jain, A., Nemaysh, V. et al. Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity. Med Chem Res 22, 2717–2723 (2013). https://doi.org/10.1007/s00044-012-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0249-x

Keywords

Navigation