Skip to main content
Log in

Analytic continuation of Liouville theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Correlation functions in Liouville theory are meromorphic functions of the Liouville momenta, as is shown explicitly by the DOZZ formula for the three-point function on S2. In a certain physical region, where a real classical solution exists, the semiclassical limit of the DOZZ formula is known to agree with what one would expect from the action of the classical solution. In this paper, we ask what happens outside of this physical region. Perhaps surprisingly we find that, while in some range of the Liouville momenta the semiclassical limit is associated to complex saddle points, in general Liouville’s equations do not have enough complex-valued solutions to account for the semiclassical behavior. For a full picture, we either must include “solutions” of Liouville’s equations in which the Liouville field is multivalued (as well as being complex-valued), or else we can reformulate Liouville theory as a Chern-Simons theory in three dimensions, in which the requisite solutions exist in a more conventional sense. We also study the case of “timelike” Liouville theory, where we show that a proposal of Al. B. Zamolodchikov for the exact three-point function on S2 can be computed by the original Liouville path integral evaluated on a new integration cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A Holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. Y. Sekino and L. Susskind, Census Taking in the Hat: FRW/CFT Duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. D. Harlow and L. Susskind, Crunches, Hats and a Conjecture, arXiv:1012.5302 [INSPIRE].

  6. H. Dorn and H. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Hadasz and Z. Jaskolski, Polyakov conjecture for hyperbolic singularities, Phys. Lett. B 574 (2003) 129 [hep-th/0308131] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. L. Hadasz and Z. Jaskolski, Classical Liouville action on the sphere with three hyperbolic singularities, Nucl. Phys. B 694 (2004) 493 [hep-th/0309267] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  12. S. Pasquetti and R. Schiappa, Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c = 1 Matrix Models, Annales Henri Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. M.V. Berry, Infinitely many stokes smoothings in the gamma function, Proc. Roy. Soc. Lond. A 434 (1991) 465.

    ADS  Google Scholar 

  14. W.G.C. Boyd, Gamma function asymptotics by an extension of the method of steepest descent, Proc. Roy. Soc. Lond. A 447 (1994) 609.

    ADS  Google Scholar 

  15. E. Braaten, T. Curtright, G. Ghandour and C.B. Thorn, Nonperturbative weak coupling analysis of the quantum Liouville field theory, Annals Phys. 153 (1984) 147 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J. Polchinski, Remarks On The Quantum Liouville Theory, presented at Strings90 Conference, College Station U.S.A., March 12-17 1990.

  17. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. H.L. Verlinde, Conformal field theory, 2d Gravity, and Quantization Of Teichmüller Space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Chekhov and V. Fock, Quantum Teichmüller space, Theor. Math. Phys. 120 (1999) 1245 [math/9908165] [INSPIRE].

    Article  MATH  Google Scholar 

  20. J. Teschner, Quantum Liouville theory versus quantized Teichmüller spaces, Fortsch. Phys. 51 (2003) 865 [hep-th/0212243] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. D. Gaiotto and E. Witten, Knot Invariants From Four-Dimensional Gauge Theory, to appear.

  22. A. Strominger and T. Takayanagi, Correlators in time-like bulk Liouville theory, Adv. Theor. Math. Phys. 7 (2003) 369 [hep-th/0303221] [INSPIRE].

    MathSciNet  Google Scholar 

  23. A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [INSPIRE].

  24. I. Kostov and V. Petkova, Bulk correlation functions in 2 − D quantum gravity, Theor. Math. Phys. 146 (2006) 108 [hep-th/0505078] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Kostov and V. Petkova, Non-rational 2 − D quantum gravity. I. World sheet CFT, Nucl. Phys. B 770 (2007) 273 [hep-th/0512346] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Kostov and V. Petkova, Non-Rational 2D Quantum Gravity II. Target Space CFT, Nucl. Phys. B 769 (2007) 175 [hep-th/0609020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Schomerus, Rolling tachyons from Liouville theory, JHEP 11 (2003) 043 [hep-th/0306026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. W. McElgin, Notes on Liouville Theory at c ≤ 1, Phys. Rev. D 77 (2008) 066009 [arXiv:0706.0365] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. S. Fredenhagen and V. Schomerus, On minisuperspace models of S-branes, JHEP 12 (2003) 003 [hep-th/0308205] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Y. Nakayama, Liouville field theory: A Decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. P.H. Ginsparg and G.W. Moore, Lectures on 2 − D gravity and 2 − D string theory, hep-th/9304011 [INSPIRE].

  33. J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [hep-th/9507109] [INSPIRE].

    ADS  Google Scholar 

  34. H. Poincaré, Les Fonctions Fuchsiennes et lEquation Δu = e u, J. Math. Pures Appl. 4 (1898) 137.

    Google Scholar 

  35. G. Gibbons, S. Hawking and M. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. V.P. Frolov, D. Fursaev and D.N. Page, Thorny spheres and black holes with strings, Phys. Rev. D 65 (2002) 104029 [hep-th/0112129] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Umehara and K. Yamada, Metrics of Constant Curvature 1 with Three Conical Singularities on the 2-Sphere, Illinois J. Math. 44 (2000) 72 [math/9801137].

    MATH  MathSciNet  Google Scholar 

  38. A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  39. J. Teschner, The Minisuperspace limit of the SL(\( {2},\;\mathbb{C} \))/SU(2) WZNW model, Nucl. Phys. B 546 (1999) 369 [hep-th/9712258] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Teschner, Operator product expansion and factorization in the H + (3) WZNW model, Nucl. Phys. B 571 (2000) 555 [hep-th/9906215] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. J. Teschner, Crossing symmetry in the H(3) + WZNW model, Phys. Lett. B 521 (2001) 127 [hep-th/0108121] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(\( {2},\;\mathbb{R} \)) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(\( {2},\;\mathbb{R} \)) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. V. Knizhnik and A. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. A.B. Zamolodchikov and A.B. Zamolodchikov, Physics Reviews. Vol. 104: Conformal Field Theory and Critical Phenomena in Two-dimensional Systems, Taylor & Francis, Inc., New York U.S.A. (1989).

    Google Scholar 

  46. L. Hadasz, Z. Jaskolski and M. Piatek, Analytic continuation formulae for the BPZ conformal block, Acta Phys. Polon. B 36 (2005) 845 [hep-th/0409258] [INSPIRE].

    ADS  Google Scholar 

  47. A. Zamolodchikov, Conformal Symmetry In Two-dimensions: An Explicit Recurrence Formula For The Conformal Partial Wave Amplitude, Commun. Math. Phys. 96 (1984) 419.

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Zamolodchikov, Two-dimensional Conformal Symmetry and Critical Four-spin Correlation Functions in the Ashkin-Teller Model (in Russian), Zh. Eksp. Teor. Fiz. 90 (1986) 1808.

    MathSciNet  Google Scholar 

  49. A. Zamolodchikov, Conformal Symmetry in Two-dimensional Space: Recursion Representation of the Conformal Block, Theor. Math. Phys. 73 (1987) 1088.

    Article  MathSciNet  Google Scholar 

  50. S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. E. Witten, Fivebranes and Knots, arXiv:1101.3216 [INSPIRE].

  52. B. Freivogel and M. Kleban, A Conformal Field Theory for Eternal Inflation, JHEP 12 (2009) 019 [arXiv:0903.2048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Whitakker and G. Watson, A Course in Modern Analysis, fourth edition, Cambridge University Press, Cambridge U.K. (1927).

    Google Scholar 

  55. E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  56. M. Abramovitz and I. Stegun, National Bureau of Standards Applied Mathematics Series. Vol. 55: Handbook of Mathematical Functions, tenth edition, United States Department of Commerce, Washington U.S.A. (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Harlow.

Additional information

ArXiv ePrint: 1108.4417

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlow, D., Maltz, J. & Witten, E. Analytic continuation of Liouville theory. J. High Energ. Phys. 2011, 71 (2011). https://doi.org/10.1007/JHEP12(2011)071

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)071

Keywords

Navigation