Skip to main content
Log in

Superconformal block quivers, duality trees and Diophantine equations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We generalize previous results on \( \mathcal{N} \) = 1, (3 + 1)-dimensional superconformal block quiver gauge theories. It is known that the necessary conditions for a theory to be superconformal, i.e. that the beta and gamma functions vanish in addition to anomaly cancellation, translate to a Diophantine equation in terms of the quiver data. We re-derive results for low block numbers revealing an new intriguing algebraic structure underlying a class of possible superconformal fixed points of such theories. After explicitly computing the five block case Diophantine equation, we use this structure to reorganize the result in a form that can be applied to arbitrary block numbers. We argue that these theories can be thought of as vectors in the root system of the corresponding quiver and superconformality conditions are shown to associate them to certain subsets of imaginary roots. These methods also allow for an interpretation of Seiberg duality as the action of the affine Weyl group on the root lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Crawley-Boevey, Lectures on representations of quivers, available at http://www.maths.leeds.ac.uk/~pmtwc/quivlecs.pdf.

  2. H. Derksen and J. Weyman, Quiver representations, Notices Amer. Math. Soc. 52 (2005) 200.

    MathSciNet  MATH  Google Scholar 

  3. A. Savage, Finite dimensional algebras and quivers, in Encyclopedia of Mathematical Physics, volume 2, Elsevier The Netherlands (2005), pg. 313 [math.RA/0505082].

  4. M. Brion, Representations of quivers, in Notes de lécole détéGeometric Methods in Representation Theory”, (2008).

  5. I. Assem, A. Skowronski and D. Simson, Elements of representation theory of associative algebras, volume 1, Cambridge University Press, Cambridge U.K. (2006).

    Book  MATH  Google Scholar 

  6. M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].

  7. S. Benvenuti and A. Hanany, New results on superconformal quivers, JHEP 04 (2006) 032 [hep-th/0411262] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Y.-H. He, Some remarks on the finitude of quiver theories, submitted to In. J. Math. Math. Sci. (1999) [hep-th/9911114] [INSPIRE].

  9. A. Hanany and Y.-H. He, Non-Abelian finite gauge theories, JHEP 02 (1999) 013 [hep-th/9811183] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Berenstein and S. Pinansky, The minimal quiver Standard Model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [INSPIRE].

    ADS  Google Scholar 

  11. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  12. C.V. Johnson and R.C. Myers, Aspects of type IIB theory on ALE spaces, Phys. Rev. D 55 (1997) 6382 [hep-th/9610140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Beasley, B.R. Greene, C. Lazaroiu and M. Plesser, D3-branes on partial resolutions of Abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599 [hep-th/9907186] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  18. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. F. Cachazo, S. Katz and C. Vafa, Geometric transitions and N = 1 quiver theories, hep-th/0108120 [INSPIRE].

  23. M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2004) 1117 [hep-th/0212021] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Hewlett and Y.-H. He, Probing the space of toric quiver theories, JHEP 03 (2010) 007 [arXiv:0909.2879] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Davey, A. Hanany and J. Pasukonis, On the classification of brane tilings, JHEP 01 (2010) 078 [arXiv:0909.2868] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Hanany, D. Orlando and S. Reffert, Sublattice counting and orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Hanany and R.-K. Seong, Symmetries of Abelian orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. B.V. Karpov and D.Y. Nogin, Three-block exceptional collections over del Pezzo surfaces, Izv. Ross. Nauk Ser. Mat. 62 (1998) 429 [alg-geom/9703027].

    Article  MathSciNet  MATH  Google Scholar 

  30. C.P. Herzog and J. Walcher, Dibaryons from exceptional collections, JHEP 09 (2003) 060 [hep-th/0306298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C.P. Herzog, Exceptional collections and del Pezzo gauge theories, JHEP 04 (2004) 069 [hep-th/0310262] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Feng, A. Hanany, Y.H. He and A. Iqbal, Quiver theories, soliton spectra and Picard-Lefschetz transformations, JHEP 02 (2003) 056 [hep-th/0206152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. P.S. Aspinwall and I.V. Melnikov, D-branes on vanishing del Pezzo surfaces, JHEP 12 (2004) 042 [hep-th/0405134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].

  36. C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. B. Fiol, Duality cascades and duality walls, JHEP 07 (2002) 058 [hep-th/0205155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Berenstein and M.R. Douglas, Seiberg duality for quiver gauge theories, hep-th/0207027 [INSPIRE].

  40. V. Braun, On Berenstein-Douglas-Seiberg duality, JHEP 01 (2003) 082 [hep-th/0211173] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surv. Diff. Geom. 18 (2013) [arXiv:1103.5832] [INSPIRE].

  45. M. Alim et al., N = 2 quantum field theories and their BPS quivers, arXiv:1112.3984 [INSPIRE].

  46. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. B. Deng, J. Du, B. Parshall and J. Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs 150, Amer. Math. Soc., U.S.A. (2008).

  48. S. Cecotti, Categorical tinkertoys for N = 2 gauge theories, Int. J. Mod. Phys. A 28 (2013) 1330006 [arXiv:1203.6734] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P.-G. Plamondon, Gentle algebras arising from surface triangulations, arXiv:0903.3347.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Sypsas.

Additional information

ArXiv ePrint: 1211.6111

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanany, A., He, YH., Sun, C. et al. Superconformal block quivers, duality trees and Diophantine equations. J. High Energ. Phys. 2013, 17 (2013). https://doi.org/10.1007/JHEP11(2013)017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)017

Keywords

Navigation