Skip to main content
Log in

\( {\text{SL}}\left( {2,\mathbb{R}} \right) \) Chern-Simons, Liouville, and gauge theory on duality walls

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d \( {\text{SL}}\left( {2,\mathbb{R}} \right) \) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d \( \mathcal{N} = 2 \) superconformal field theory on S 3, which is realized as a duality domain wall in a 4d gauge theory on S 4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmüller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [SPIRES].

    Article  ADS  Google Scholar 

  3. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [SPIRES].

  4. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, arXiv:0807.3720 [SPIRES].

  5. E. Witten, Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys. 137 (1991) 29 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. T. Dimofte, S. Gukov and L. Hollands, Vortex counting and lagrangian 3-manifolds, arXiv:1006.0977 [SPIRES].

  7. L.D. Faddeev, R.M. Kashaev and A.Y. Volkov, Strongly coupled quantum discrete Liouville theory. I: algebraic approach and duality, Commun. Math. Phys. 219 (2001) 199 [hep-th/0006156] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. L.D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 [hep-th/9504111] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. L. Faddeev, Modular double of a quantum group, in Conférence Moshé Flato 1999. Volume I (Dijon), Kluwer, Dordrecht The Netherlands (2000).

    Google Scholar 

  10. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].

  11. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  12. H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Hosomichi, S. Lee and J. Park, AGT on the S-duality wall, JHEP 12 (2010) 079 [arXiv:1009.0340] [SPIRES].

    Article  ADS  Google Scholar 

  19. H.L. Verlinde, Conformal field theory, 2D quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Chekhov and V.V. Fock, A quantum Teichmüller space, Theor. Math. Phys. 120 (1999) 1245 [math/9908165].

    Article  MATH  Google Scholar 

  21. R.M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031 [SPIRES].

  23. J. Teschner, An analog of a modular functor from quantized Teichmüller theory, math/0510174.

  24. L.D. Faddeev and R.M. Kashaev, Strongly coupled quantum discrete Liouville theory. II: geometric interpretation of the evolution operator, J. Phys. A 35 (2002) 4043 [hep-th/0201049] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. R. Kashaev, The quantum dilogarithm and Dehn twists in quantum Teichmüller theory, in Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000), Kluwer, Dordrecht The Netherlands (2001).

    Google Scholar 

  26. J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, arXiv:1005.2846 [SPIRES].

  27. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Teschner, A lecture on the Liouville vertex operators, Int. J. Mod. Phys. A 19S2 (2004) 436 [hep-th/0303150] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  29. E. Witten, The central charge in three-dimensions, in Physics and mathematics of strings, L. Brink et al., World Scientific, Singapore (1990).

    Google Scholar 

  30. J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215.

    Article  MATH  MathSciNet  Google Scholar 

  31. J.W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971) 257.

    Article  MATH  MathSciNet  Google Scholar 

  32. N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59.

    Article  MATH  MathSciNet  Google Scholar 

  33. H.L. Verlinde and E.P. Verlinde, Conformal field theory and geometric quantization, based on lectures given at the Trieste Spring School, April 3–14, Trieste Italy (1989).

  34. S. Carlip, Inducing Liouville theory from topologically massive gravity, Nucl. Phys. B 362 (1991) 111 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Alekseev and S.L. Shatashvili, Path integral quantization of the coadjoint orbits of the Virasoro group and 2D gravity, Nucl. Phys. B 323 (1989) 719 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Bershadsky and H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Commun. Math. Phys. 126 (1989) 49 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O’Raifeartaigh, Liouville and Toda theories as conformally reduced WZNW theories, Phys. Lett. B 227 (1989) 214 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  40. A.M. Polyakov, Quantum gravity in two-dimensions, Mod. Phys. Lett. A 2 (1987) 893 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  41. O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  42. M. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. (1989) 175.

  43. N. Nekrasov and E. Witten, The Ω deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].

  45. T. Kohno, Topological invariants for 3-manifolds using representations of mapping class groups. I, Topology 31 (1992) 203.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Witten, Fivebranes and knots, arXiv:1101.3216 [SPIRES].

  47. O.J. Ganor and Y.P. Hong, Selfduality and Chern-Simons theory, arXiv:0812.1213 [SPIRES].

  48. O.J. Ganor, Y.P. Hong and H.S. Tan, Ground states of S-duality twisted N = 4 super Yang-Mills theory, JHEP 03 (2011) 099 [arXiv:1007.3749] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. J.-F. Wu and Y. Zhou, From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality, arXiv:0911.1922 [SPIRES].

  51. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [SPIRES].

    Article  ADS  Google Scholar 

  52. T. Dimofte, From 2D to 3D and wall crossing to Chern-Simons, talk given at Aspen Center for Physics, August, Aspen, U.S.A. (2010).

  53. M. Yamazaki et al., work in progress.

  54. V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  55. E. Witten, SL(2, Z) action on three-dimensional conformal field theories with abelian symmetry, hep-th/0307041 [SPIRES].

  56. K.A. Intriligator and N. Seiberg, Mirror symmetry in three dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  57. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  58. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [SPIRES].

  59. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  60. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  61. T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, arXiv:1004.1222 [SPIRES].

  62. K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 [hep-th/0108093] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  63. L.D. Faddeev and A.Y. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993) 311 [hep-th/9307048] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  64. L.D. Faddeev and R.M. Kashaev, Quantum dilogarithm, Mod. Phys. Lett. A 9 (1994) 427.

    ADS  MathSciNet  Google Scholar 

  65. W. Floyd and A. Hatcher, Incompressible surfaces in punctured-torus bundles, Topol. Appl. 13 (1982) 263.

    Article  MATH  MathSciNet  Google Scholar 

  66. K. Hikami, Generalized volume conjecture and the A-polynomials: the Neumann-Zagier potential function as a classical limit of quantum invariant, J. Geom. Phys. 57 (2007) 1895 [math/0604094].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. V.G. Turaev and O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31 (1992) 865 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  68. H. Ooguri, Partition functions and topology changing amplitudes in the 3 − D lattice gravity of Ponzano and Regge, Nucl. Phys. B 382 (1992) 276 [hep-th/9112072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  69. K. Hikami, Hyperbolic structure arising from a knot invariant, Int. J. Mod. Phys. A 16 (2001) 3309 [math-ph/0105039].

    ADS  MathSciNet  Google Scholar 

  70. R.M. Kashaev, Quantum dilogarithm as a 6j-symbol, Mod. Phys. Lett. A 9 (1994) 3757 [hep-th/9411147] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  71. T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys. 3 (2009) 363 [arXiv:0903.2472] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  72. R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys. B 849 (2011) 166 [arXiv:1010.4542] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  73. T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, arXiv:1102.4847 [SPIRES].

  74. Y. Terashima and M. Yamazaki, Semiclassical analysis of the 3d/3d relation, arXiv:1106.3066 [SPIRES].

  75. B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U q (SL(2, R)), Commun. Math. Phys. 224 (2001) 613 [math/0007097].

    Article  ADS  MathSciNet  Google Scholar 

  76. L. Hadasz, Z. Jaskolski and P. Suchanek, Modular bootstrap in Liouville field theory, Phys. Lett. B 685 (2010) 79 [arXiv:0911.4296] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  77. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  78. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  79. V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1.

  80. N.J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449.

    Article  MATH  MathSciNet  Google Scholar 

  81. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [SPIRES].

    ADS  Google Scholar 

  82. E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [SPIRES].

  83. N. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  84. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  85. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].

  86. A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  87. H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  88. H. Awata and Y. Yamada, Five-dimensional AGT relation and the deformed β-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  89. A.V. Stoyanovsky, Quantum Langlands duality and conformal field theory, math/0610974.

  90. M.-C. Tan, Gauging spacetime symmetries on the worldsheet and the geometric langlands program, JHEP 03 (2008) 033 [arXiv:0710.5796] [SPIRES].

    Article  ADS  Google Scholar 

  91. M.-C. Tan, Gauging spacetime symmetries on the worldsheet and the geometric langlands program — II, JHEP 09 (2008) 074 [arXiv:0804.0804] [SPIRES].

    Article  ADS  Google Scholar 

  92. E. Frenkel, Lectures on the Langlands program and conformal field theory, in Frontiers in number theory, physics, and geometry. II, P.E. Cartier et al. eds., Springer, Berlin Garmany (2007).

    Google Scholar 

  93. G. Giribet, Y. Nakayama and L. Nicolas, Langlands duality in Liouville-H +3 WZNW correspondence, Int. J. Mod. Phys. A 24 (2009) 3137 [arXiv:0805.1254] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  94. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.

  95. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  96. S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4D/2D correspondences, arXiv:1006.3435 [SPIRES].

  97. G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  98. J.P. Gauntlett, N. Kim and D. Waldram, M-fivebranes wrapped on supersymmetric cycles, Phys. Rev. D 63 (2001) 126001 [hep-th/0012195] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  99. R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and N = 2 gauge systems, arXiv:0909.2453 [SPIRES].

  100. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].

  101. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  102. S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  103. B. Szendroi, Non-commutative Donaldson-Thomas theory and the conifold, Geom. Topol. 12 (2008) 1171 [arXiv:0705.3419] [SPIRES].

    Article  MathSciNet  Google Scholar 

  104. S. Mozgovoy and M. Reineke, On the noncommutative Donaldson-Thomas invariants arising from brane tilings, arXiv:0809.0117 [SPIRES].

  105. H. Ooguri and M. Yamazaki, Crystal melting and toric Calabi-Yau manifolds, Commun. Math. Phys. 292 (2009) 179 [arXiv:0811.2801] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  106. R. Kenyon and A. Goncharov, Dimers and cluster integrable systems, arXiv:1107.5588 [SPIRES].

  107. H. Dorn and H.J. Otto, Remarks on T-duality for open strings, Nucl. Phys. Proc. Suppl. 56B (1997) 30 [hep-th/9702018] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  108. R.C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  109. R. Guo and X. Liu, Quantum Teichmüller space and Kashaev algebra, Algebr. Geom. Topol. 9 (2009) 1791.

    Article  MATH  MathSciNet  Google Scholar 

  110. H. Bai, A uniqueness property for the quantization of Teichmüller spaces, Geom. Dedicata 128 (2007) 1.

    Article  MATH  MathSciNet  Google Scholar 

  111. A. Beilinson and V. Drinfeld, Opers, math/0501398.

  112. S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. 117 (1983) 207.

    Article  MATH  MathSciNet  Google Scholar 

  113. V.A. Y., Noncommutative hypergeometry, Comm. Math. Phys. 258 (2005) 257 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  114. S.N.M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997) 1069.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  115. S. Kharchev, D. Lebedev and M. Semenov-Tian-Shansky, Unitary representations of \( {U_q}\left( {\mathfrak{s}\mathfrak{l}\left( {2,R} \right)} \right) \) , the modular double and the multiparticle q-deformed Toda chains, Commun. Math. Phys. 225 (2002) 573 [hep-th/0102180] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Yamazaki.

Additional information

ArXiv ePrint: 1103.5748

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terashima, Y., Yamazaki, M. \( {\text{SL}}\left( {2,\mathbb{R}} \right) \) Chern-Simons, Liouville, and gauge theory on duality walls. J. High Energ. Phys. 2011, 135 (2011). https://doi.org/10.1007/JHEP08(2011)135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)135

Keywords

Navigation