Skip to main content
Log in

Graviton emission in Einstein-Hilbert gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The five-point amplitude for the scattering of two distinct scalars with the emission of one graviton in the final state is calculated in exact kinematics for Einstein- Hilbert gravity. The result, which satisfies the Steinmann relations, is expressed in Sudakov variables, finding that it corresponds to the sum of two gauge invariant contributions written in terms of a new two scalar - two graviton effective vertex. A similar calculation is carried out in Quantum Chromodynamics (QCD) for the scattering of two distinct quarks with one extra gluon in the final state. The effective vertices which appear in both cases are then evaluated in the multi-Regge limit reproducing the well-known result obtained by Lipatov where the Einstein-Hilbert graviton emission vertex can be written as the product of two QCD gluon emission vertices, up to corrections to preserve the Steinmann relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large- \( \mathcal{N} \) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The complete four-loop four-point amplitude in \( \mathcal{N} = {4} \) super-Yang-Mills theory, Phys. Rev. D 82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].

    ADS  Google Scholar 

  5. Z. Bern, L.J. Dixon, D. Dunbar, M. Perelstein and J. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of \( \mathcal{N} = {8} \) supergravity at four loops,Phys. Rev. Lett. 103(2009) 081301 [arXiv:0905.2326] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

    ADS  Google Scholar 

  8. N. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033 [Erratum ibid. D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. J.F. Donoghue and T. Torma, Infrared behavior of graviton-graviton scattering, Phys. Rev. D 60 (1999) 024003 [hep-th/9901156] [INSPIRE].

    ADS  Google Scholar 

  10. D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].

    ADS  Google Scholar 

  12. Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S.-Q. Su, Graviton bremsstrahlung at high energies, Doctoral Thesis, Katholieke Universiteit Leuven, Leuven Belgium (1982).

  14. J. Geris and S.-Q. Su, Single bremsstrahlung processes in quantum gravity, Commun. Theor. Phys. 8 (1987) 325 [INSPIRE].

    Google Scholar 

  15. J.F. Donoghue, Introduction to the effective field theory description of gravity, gr-qc/9512024 [INSPIRE].

  16. L. Lipatov, Effective action for the Regge processes in gravity, arXiv:1105.3127 [INSPIRE].

  17. M.T. Grisaru, P. van Nieuwenhuizen and C. Wu, Reggeization and the question of higher loop renormalizability of gravitation, Phys. Rev. D 12 (1975) 1563 [INSPIRE].

    ADS  Google Scholar 

  18. M.T. Grisaru and H.J. Schnitzer, Dynamical calculation of bound state supermultiplets in \( \mathcal{N} = {8} \) supergravity, Phys. Lett. B 107 (1981) 196 [INSPIRE].

    ADS  Google Scholar 

  19. L. Lipatov, Graviton reggeization, Phys. Lett. B 116 (1982) 411 [INSPIRE].

    ADS  Google Scholar 

  20. L. Lipatov, Multi-Regge processes in gravitation, Sov. Phys. JETP 55 (1982) 582 [Zh. Eksp. Teor. Fiz. 82 (1982) 991] [INSPIRE].

    Google Scholar 

  21. L. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].

    Google Scholar 

  23. V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    ADS  Google Scholar 

  24. E. Kuraev, L. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].

    ADS  Google Scholar 

  25. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  27. J.M. Martın-García, xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun. 179 (2008) 597 [arXiv:0803.0862].

    Article  ADS  MATH  Google Scholar 

  28. Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel. 5 (2002)5 [gr-qc/0206071] [INSPIRE].

    MathSciNet  Google Scholar 

  29. J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to \( \mathcal{N} = {4} \) super-Yang-Mills, J. Phys. A 44 (2011) 454004 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. R. Gastmans and T.T. Wu, The ubiquitous photon: helicity method for QED and QCD, Clarendon, Oxford U.K. (1990) [INSPIRE].

  31. Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].

    Article  ADS  Google Scholar 

  32. O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren (in German), Helv. Phys. Acta 33 (1960) 257.

    MathSciNet  MATH  Google Scholar 

  33. O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II (in German), Helv. Phys. Acta 33 (1960) 347.

    MathSciNet  MATH  Google Scholar 

  34. L. Lipatov, High-energy asymptotics of multicolor QCD and two-dimensional conformal field theories, DESY-93-055, DESY, Zeuthen Germany April 1993 [Phys. Lett. B 309 (1993) 394 ] [INSPIRE].

  35. L. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [INSPIRE].

    Google Scholar 

  36. J. Bartels, High-energy behavior in a non-Abelian gauge theory. 2. First corrections to T(nm) beyond the leading LNS approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Kwiecinski and M. Praszalowicz, Three gluon integral equation and odd c singlet Regge singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].

    ADS  Google Scholar 

  38. L. Lipatov, Duality symmetry of Reggeon interactions in multicolor QCD, Nucl. Phys. B 548 (1999) 328 [hep-ph/9812336] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Lipatov, High-energy asymptotics of multicolor QCD and exactly solvable lattice models, Padua preprint DFPD-93-TH-70, unpublished, University of Padua, Padua Italy October 1993 [hep-th/9311037] [INSPIRE].

  40. L. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models, JETP Lett. 59 (1994) 596 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994)571] [INSPIRE].

    ADS  Google Scholar 

  41. L. Faddeev and G. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [INSPIRE].

    ADS  Google Scholar 

  42. L. Lipatov, Integrability of scattering amplitudes in \( \mathcal{N} = {4} \) SUSY, J. Phys. A 42 (2009) 304020 [arXiv:0902.1444] [INSPIRE].

    MathSciNet  Google Scholar 

  43. J. Bartels, L. Lipatov and A. Prygarin, Integrable spin chains and scattering amplitudes, J. Phys. A 44 (2011) 454013 [arXiv:1104.0816] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. J. Bartels, L. Lipatov and A. Sabio Vera, BFKL Pomeron, reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].

    ADS  Google Scholar 

  45. J. Bartels, L. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Romagnoni and A. Sabio Vera, A hidden \( BFKL/XX{X_{{ - \frac{1}{2}}}} \) spin chain mapping, arXiv:1111.4553 [INSPIRE].

  47. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

    ADS  Google Scholar 

  49. Z. Bern and T. Dennen, A color dual form for gauge-theory amplitudes, arXiv:1103.0312 [INSPIRE].

  50. L.D. Landau and E.M. Lifshitz, The classical theory of fields, 3rd revised edition, Pergamon, London U.K. (1971).

  51. B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev. 162 (1967) 1239 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Sabio Vera.

Additional information

ArXiv ePrint: 1112.4494

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, A.S., Campillo, E.S. & Vázquez-Mozo, M.Á. Graviton emission in Einstein-Hilbert gravity. J. High Energ. Phys. 2012, 5 (2012). https://doi.org/10.1007/JHEP03(2012)005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)005

Keywords

Navigation