Skip to main content
Log in

The effects of interface attachment kinetics on solidification interface morphologies

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The presence of an interface kinetic effect significantly influences microstructures that form during the solidification of alloys. In order to quantitatively evaluate the effect of interface kinetics on microstructure formation, critical directional solidification studies have been designed in the pivalic acid-ethanol (PVA-Eth) system, in which significant anisotropies in interface properties are present. The interface kinetic effect is studied in high-purity PVA by measuring the interface temperature of a planar interface which is growing under steady-state conditions. In a binary system of PV A-Eth, the interface kinetic effect is characterized by examining the variations in dendritic microstructural scales with velocity and composition and by examining the planar interface instability condition. The variations in the dendrite tip radius,R, the primary spacing, and the secondary arm spacing near the dendrite tip with velocity,V, as well as with composition, have been characterized. Experimental results at a given composition showedVR 2. to be constant, and those at constant velocity showed δT s R 2 to be constant, where δT s is the product of the liquidus slope and the concentration difference at the dendrite tip. In order to characterize the system properly, additional experiments were carried out to measure the liquidus temperatures of the system. These experimental results are then compared with the theoretical models of planar interface instability and of dendritic growth to evaluate the role of interface kinetics on microstructure formation. Based on the theoretical models for planar and dendritic growth in an anisotropic system, the results on the interface kinetic effects are analyzed to give an insight into the possible phenomena which contribute to the complex kinetic behavior that is observed experimentally in the PVA system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.C. Flemings:Solidification Processing. McGraw-Hill. New York, NY, 1974.

    Google Scholar 

  2. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Ltd., Aedermannsdorf, Switzerland, 1986.

    Google Scholar 

  3. G.P. Ivantsov:Dokl. Akad. Nauk SSSR, 1947, vol. 58, pp. 567–69.

    Google Scholar 

  4. D.E. Temkin:Sov. Phy. Dokl., 1960, vol. 5, pp. 609–12.

    Google Scholar 

  5. R. Trivedi:Acta Metall., 1970, vol. 18, pp. 287–96.

    Article  Google Scholar 

  6. M.E. Glicksman, R.J. Schaefer, and J.D. Ayers:Metall. Trans. A, 1976, vol. 7A, pp. 1747–59.

    Article  Google Scholar 

  7. J.S. Langer and H. Müller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1681–90.

    Article  Google Scholar 

  8. J.D. Hunt: inSolidification and Casting of Metals, The Metals Society, London, 1979, Book 192, pp. 3–9.

    Google Scholar 

  9. S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 701–15.

    Article  Google Scholar 

  10. S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 717–34.

    Article  Google Scholar 

  11. M.E. Glicksman and N.B. Singh: ASTM STP 890, ASTM, Philadelphia, PA, 1986, pp. 44–61.

    Google Scholar 

  12. R. Trivedi:J. Cryst. Growth, 1980, vol. 49, pp. 219–32.

    Article  Google Scholar 

  13. D. Meiron:Phys. Rev., 1986, vol. 33A, pp. 2704–15.

    Article  Google Scholar 

  14. A. Barbieri, D.C. Hong, and J.S. Langer:Phys. Rev., 1987, vol. A35, pp. 1802–08.

    Article  Google Scholar 

  15. P. Pelcé and Y. Pomeau:Stud. Appl. Math., 1986, vol. 74, pp. 245–58.

    Google Scholar 

  16. D. Kessler and H. Levine:Phys. Rev. Lett., 1986, vol. 57, pp. 3069–72.

    Article  Google Scholar 

  17. P. Pelcé: University of Provence, Marseilles, France, unpublished research, 1989.

  18. K. Somboonsuk, J.T. Mason, and R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 967–75.

    Article  Google Scholar 

  19. R. Trivedi and K. Somboonsuk:J. Mater. Sci. Eng., 1984, vol. 65, pp. 65–74.

    Article  Google Scholar 

  20. H. Esaka and W. Kurz:J. Cryst. Growth, 1985, vol. 72. p. 578.

    Article  Google Scholar 

  21. R. Trivedi, V. Seetharaman, and M.E. Eshelman:Metall. Trans. A, in press.

  22. M. Brissaud-Lancin, C. Marhic, and A. Riviere:Phil. Mag., 1986, vol. 53, pp. 61–72.

    Article  Google Scholar 

  23. J.T. Mason and M.E. Eshelman: IS-4906, Ames Laboratory, Ames, lA, 1984.

  24. H. Esaka: D.Sc. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1985.

    Google Scholar 

  25. G.V. Smith, W.A. Tiller, and J.W. Rutter:Can. J. Phys., 1956, vol. 33, pp. 723–45.

    Article  Google Scholar 

  26. M.E. Eshelman, V. Seetharaman, and R. Trivedi:Acta Metall., 1988, vol. 36, pp. 1165–74.

    Article  Google Scholar 

  27. D.G. McCartney and J.D. Hunt:Acta Metall., 1981, vol. 29, pp. 1851–60.

    Article  Google Scholar 

  28. J.T. Mason, J.D. Verhoeven, and R. Trivedi:J. Cryst. Growth, 1982, vol. 59, pp. 516–24.

    Article  Google Scholar 

  29. J.C. Baker and J.W. Cahn: inSolidification, ASM, Metals Park, OH, 1971, pp. 23–58.

    Google Scholar 

  30. P. Pelcé: University of Provence, Marseilles, France, private communication, 1989.

  31. R. Trivedi:J. Cryst. Growth, 1980, vol. 48, pp. 93–99.

    Article  Google Scholar 

  32. M.E. Glicksman: inFundamentals of Solidification and Materials Processing, R. Trivedi, J.A. Sekhar, and J. Mazumdar, eds., The IBH and Oxford Press, Ncw Delhi, India, 1989, pp. 11–31.

    Google Scholar 

  33. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  34. S.R. Coriell and R.F. Sekerka:J. Cryst. Growth, 1976, vol. 34, pp. 157–63.

    Article  Google Scholar 

  35. W. Kurz: Swiss Federal Institute of Technology, Lausanne, Switzerland, private communication, 1989.

  36. S. Kondo and T. Oda:Bull. Chem. Soc. Jpn., 1954. vol. 27, pp. 567–70.

    Article  Google Scholar 

  37. R.L. Jackson and J.H. Strange:Mol. Phys., 1971, vol. 22, pp. 313–23.

    Article  Google Scholar 

  38. R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    Article  Google Scholar 

  39. M.A. Eshelman: Ph.D. Thesis, Iowa State University, Ames. IA, 1987.

    Google Scholar 

  40. E.R. Rubinstein and M.E. Glicksman:J. Cryst. Growth, in press.

  41. E.R. Rubinstein and M.E. Glicksman:J. Cryst. Growth, in press.

  42. V. Seetharaman, L.M. Fabietti, and R. Trivedi:Metall. Trans. A, 1989, vol. 20A, pp. 2567–70.

    Article  Google Scholar 

  43. M.A. Chopra, M.E. Glicksman. and N.B. Singh:Metall. Trans. A, 1988, vol. 19A, pp. 3087–96.

    Article  Google Scholar 

  44. N.B. Singh and M.E. Glicksman:J. Cryst. Growth, 1989. vol. 98, pp. 534–40.

    Article  Google Scholar 

  45. A. Dougherty and J. Gollub:Phys. Rev., 1988, vol. A38, pp. 3043–46.

    Article  Google Scholar 

  46. J.H. Bilgram, M. Firmann, and E. Hurlimann:J. Cryst. Growth, 1989, vol. 96, pp. 175–87.

    Article  Google Scholar 

  47. G. Horvay and J.W. Cahn:Acra Metall., 1961, vol. 9, p. 697.

    Google Scholar 

  48. R. Trivedi:Acta Metall., 1970, vol. 18, pp. 287–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, R., Mason, J.T. The effects of interface attachment kinetics on solidification interface morphologies. Metall Trans A 22, 235–249 (1991). https://doi.org/10.1007/BF03350965

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350965

Keywords

Navigation