Skip to main content
Log in

Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Degradation of 4-chloro-2-nitro phenol by ozonation in aqueous solution was studied in a semi batch reactor under constant ozone dosage and variable pH conditions. The effectiveness of the process was estimated based on the degree of conversion of 4-chloro-2-nitro phenol. It was observed that ozonation is more effective at alkaline reaction of medium than other conditions. The degree of conversion achieved (at the first 5 minutes of the process)at pH 9 was 99.64% compared to 99.03% and 77.35% at pH 7 and 3, respectively. Another parameter used to quantify the 4-chloro-2-nitrophenol during ozonation was the pseudo first order rate constant k [min−1]. Results showed that the rate constant of the process was approximately much higher at the alkaline pH compared to acidic ones. A considerable improvement in chemical oxygen demand removal was observed at pH above 7. At pH 9, the reduction in chemical oxygen demand at the end of the process reached 56.9 %. The degree of organically bounded nitrogen conversion to nitrate was higher at pH 3. Of the total organic carbon reduction, 15.89 % was observed at pH 9. The 4-chloro-2-nitro phenol degradation intermediate products were analyzed by mass- spectrometry. The main intermediate product was chlorophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaton, I. A.; Balcioglu, I. A., (2001). Photochemical and heterogeneous photocatalytic degradation of waste vinyl sulphone dyes: A case study with hydrolyzed Reactive Black 5. J. Photochem. Photobiol. A, 141 (2-3), 247–254 (8 pages).

    Article  CAS  Google Scholar 

  • Andrews, S. A.; Huck, P. M.; Coutts, R. T., (1993). Quantitation of ozonation by-products of fractionated aquatic natural organic matter. Worn. Wasser., 81 (2), 151–165 (15 pages).

    CAS  Google Scholar 

  • Beltran, F. J.; Encinar, J. M.; Alonso, M. A., (1998). Nitroaromatic hydrocarbon ozonationin water. 1. Single ozonation. Ind. Eng. Chem. Res., 37 (1), 25–31 (7 pages).

    Article  CAS  Google Scholar 

  • Benitez, F. J., (2003). Ozone reaction kinetics for water and wastewater systems, 1st. Ed. Lewis Publishers, 124.

  • Benitez, F. J.; Beltran-Heredia, J.; Acero, J. L.; Rubio, F. J., (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. J. Hazard. Mater. B, 79 (3), 271–285 (15 pages).

    Article  CAS  Google Scholar 

  • Chu, W.; Wong, C. C., (2003). A disappearance model for the prediction of trichlorophenol ozonation. Chemosphere, 51 (4), 289–294 (6 pages).

    Article  CAS  Google Scholar 

  • Diwani, G. E.; Rafie, S. E.; Hawash, S., (2009). Degradation of 2,4,6-trinitrotoluene in aqueous solution by ozonation and multi-stage ozonation biological treatment. Int. J. Environ. Sci. Tech., 64, 619–628 (10 pages).

    Article  Google Scholar 

  • Gharbani, P.; Tabatabaii, S. M.; Mehrizad, A., (2008). Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Tech., 5 (4), 495–500 (6 pages).

    Article  CAS  Google Scholar 

  • Giri, R. R.; Ozaki, H.; Taniguchi, S.; Takanami, R., (2008). Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber. Int. J. Environ. Sci. Tech., 5 (1), 17–26(10 pages).

    Article  CAS  Google Scholar 

  • Goi, A.; Trapido, M.; Tuhkanen, T., (2004). A study of toxicity, biodegradability and some by-products of ozonised nitrophenols. Ad. Environ. Res., 8 (3-4), 303–311(9 pages).

    Article  CAS  Google Scholar 

  • Graham, N.; Chu, W.; Lau, C., (2003). Observations of 2, 4, 6-trichlorophenol degradation by Ozone. Chemosphere, 51 (4), 237–243 (7 pages).

    Article  CAS  Google Scholar 

  • Gunten, U. V.; (2003). Ozonation of drinking water. Part 1. Oxidation kinetics and product formation. Water. Res., 37 (7), 1443–1467(25 pages).

    Google Scholar 

  • Gurol, M. D.; Vatistas, R., (1987). Oxidation of phenolic compounds by ozone and ozone + UV radiation: A comparative study. Water Res., 21 (8), 895–900 (6 pages).

    Article  CAS  Google Scholar 

  • Hoigne, J., (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes, in: Hrubec, J. (Eds.), The Handbook of Environ. Chem. Springer-Verlag., Berlin.

  • Hoigne, J.; Bader, H., (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water I. Water Res., 17 (2), 173–183 (11 pages).

    Article  CAS  Google Scholar 

  • Hong, P. K. A.; Zeng, Y., (2002). Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Res., 36 (17), 4243–4254 (12 pages).

    Article  CAS  Google Scholar 

  • Huang, W. H.; Fang, G. G.; Wang, C. C., (2005). A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids Surf. A, 260 (1), 45–51 (7 pages).

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B.; Ziolek, M.; Nawrocki, J., (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B: Environ., 46 (4), 639–669 (31 pages).

    Article  CAS  Google Scholar 

  • Kuo, C. H.; Huang, C. H., (1995). Aqueous phase ozonation of chlorophenols. J. Hazard. Mater., 41 (1), 31–45 (15 pages).

    Article  CAS  Google Scholar 

  • Legube, B.; Karpel, N. V. L., (1999). Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal. Today, 53 (1), 61–72 (12 pages).

    Article  CAS  Google Scholar 

  • Legube, B.; Langlais, B.; Sohm, B.; Dor, M., (1981). Identification of ozonation by-products of aromatic hydrocarbon micropollutants: Effect on chlorination and biological filtration. Ozone Sci. Eng., 3 (1), 33–48 (16 pages).

    Article  CAS  Google Scholar 

  • Madukasi, E. I.; Dai, X.; He, C.; Zhou, J., (2010). Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Tech., 7 (1), 165–174 (10 pages).

    CAS  Google Scholar 

  • Muthukumar, M.; Sargunamani, D.; Selvakumar, N.; Rao, V. J., (2004). Optimization of ozone treatment for color and COD removal of acid dye effluent using central composite design experiment. Dyes Pigments, 63 (2), 127–134 (8 pages).

    Article  CAS  Google Scholar 

  • Panjeshahi, M.H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  • Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int. J. Environ. Sci. Tech., 4 (1), 19–25 (7 pages).

    Article  CAS  Google Scholar 

  • Sarasa, J.; Roche, M. P.; Ormad, M. P.; Gimeno, E.; Puig, A.; Ovelleiro, J. L., (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res., 32 (9), 2721–2727 (7 pages).

    Article  CAS  Google Scholar 

  • Saritha, P.; Aparana, C.; Himabindu, V.; Anjaneyulu, Y., (2007). Advanced oxidation of 4-chloro-2-nitrophenol (4C-2NP) — A comparative study. J. Hazard. Mater., 149 (3), 609–614 (6 pages).

    Article  CAS  Google Scholar 

  • Sauleda, R.; Brillas, E., (2001). Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl. Catal. B: Environ., 29 (2), 135–145 (11 pages).

    Article  CAS  Google Scholar 

  • Shen, J. M.; Chen, Z. L.; Xu, Z. Z.; Li, X. Y.; Xu, B. B.; Qi, F., (2008). Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J. Hazard. Mater., 152 (3), 1325–1331 (7 pages).

    Article  CAS  Google Scholar 

  • Song, S.; Xia, M.; He, Z.; Ying, H.; Lu, B.; Chen, J., (2007). Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis. J. Hazard. Mater., 144 (1-2), 532–537 (6 pages).

    Article  CAS  Google Scholar 

  • Stockinger, H.; Heinzle, E.; Kut, O. M., (1995). Removal of chloro and nitro aromatic wastewater pollutants by ozonation and biotreatment. Environ. Sci. Tech., 29 (8), 2016–2022 (7 pages).

    Article  CAS  Google Scholar 

  • Utsumi, H.; Han, Y. H.; Ichikawa, K., (2003). A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation. Water Res., 37 (20), 4924–4928 (5 pages).

    Article  CAS  Google Scholar 

  • Villaseñor, J.; Reyes, P.; Pecchi, G., (2002). Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts. Catal. Today, 76 (2), 121–131(11 pages).

    Article  Google Scholar 

  • Wu, J.; Rudya, K.; Sparka, J., (2000). Oxidation of aqueous phenol by ozone and peroxidase. Adv. Environ. Res., 4 (4), 339–346 (8 pages).

    Article  Google Scholar 

  • Zareen, K.; Anjaneyulu, Y., (2005). Influence of soil components on adsorption —desorption of hazardous organic-development of low cost technology for reclamation of hazardous waste dumpsites. J. Hazard. Mater. B, 118 (1-3), 161–169 (9 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gharbani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharbani, P., Khosravi, M., Tabatabaii, S.M. et al. Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int. J. Environ. Sci. Technol. 7, 377–384 (2010). https://doi.org/10.1007/BF03326147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326147

Keywords

Navigation