Skip to main content
Log in

An opium alkaloid-papaverine ameliorates ethanol-induced hepatotoxicity: Diminution of oxidative stress

  • Toxicology
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

In this communication, we show the modulatory potential of papaverine, an opium alkaloid and a well known vasodilator agent on the ethanol-induced hepatic oxidative stress in male Wistar rats. Ethanol treatment (50% v/v) enhanced lipid peroxidation significantly accompanied by a decline in the activities of glutathione peroxidase (G-Px), glutathione reductase (GR) and depletion in levels of hepatic glutathione (GSH). Ethanol administration increased hepatic glutathione-s-transferases (GST). Enhanced lipid peroxidation induced by ethanol was significantly reduced when papverine was coadministered (P<0.05). In addition, the depleted levels of glutathione and inhibited activities of G-Px and GR recovered significantly (P<0.05) levelling off to control values on co-exposure. Papaverine (200 mg/kg bw) effectively antagonised the ethanol-induced lipid peroxidation and impaired glutathione levels and glutathione dependent enzyme systems. Our results suggest that papaverine is an effective chemopreventive agent in the liver and may suppress the ethanol-induced hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Plaa, G.L. and Witschi, H. (1971) Chemicals drugs and lipid peroxidation Annu. Rev. Pharmacol. Toxicol. 16, 125–141.

    Article  Google Scholar 

  2. Irving, M.G., Halliday, J.W. and Dowell, L.W. (1988) Association between alcoholism and increased hepatic iron stores. Alcoholism Clin. Exp. 12, 7–13.

    Article  CAS  Google Scholar 

  3. Chance, B., Sies, H. and Boveris, A., (1979) Hydroperoxide metabolism in mammalian organs Physiol. Rev., 59, 527–605.

    PubMed  CAS  Google Scholar 

  4. Sies, A., Wendel, A. and Bors, W. (1984) In: Metabolic Basis of Detoxification, Ed. Jakoby, W.B., Bend, J.R. and Caldwell, J. Academic Press, New York, Vol. 2, p. 307.

    Google Scholar 

  5. Flohe, L. (1982) In: Free Radicals in Biology, Ed. Pryor, W.A. Academic Press, New York, Vol. 5, p. 223.

    Google Scholar 

  6. Jakoby, W.B. and Habig, W.H. (1980) In: Enzymatic Basis of Detoxification, Ed. Jakoby, W.B., Academic Press, New York, Vol. 2, p. 63.

    Google Scholar 

  7. Farooqui, M.Y.H. and Ahmed, A.E. (1984) Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci. 34, 2413–2418.

    Article  PubMed  CAS  Google Scholar 

  8. Minor, T. and Isselhard, W. (1993) Role of the hepato vasculature in free radical mediated reperfusion damage of the liver. Eur Surg. Res. 25(5), 287–293.

    PubMed  CAS  Google Scholar 

  9. Shiraishi, N., Arima, T., Aono, K., Inouye, B., Morimoto, Y. and Utsumi, K. (1980) Inhibition by biscoclaurine alkaloid of lipid peroxidation in biological membranes. Physiol. Chem. Phys. 12(4), 299–305.

    PubMed  CAS  Google Scholar 

  10. Wright, J.R., Colby, H.D. and Miles, P.R. (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch. Biochem. and Biophys. 206 296–304.

    Article  CAS  Google Scholar 

  11. Jollow, D.J., Mitchell, J.R., Zampaglione, N. and Gilete, J.R. (1974) Bromobenzene-induced necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 11, 151–169.

    Article  CAS  Google Scholar 

  12. Habig, W.H., Pabst, M.J. and Jakob, W.B. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

    PubMed  CAS  Google Scholar 

  13. Athar, M., Khan, W.A. and Mukhtar, H. (1989) Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 49, 5784–5788.

    PubMed  CAS  Google Scholar 

  14. Brady, J.F., Li D.C., Ishizaki, H. and Yang, C.S. (1988) Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities. Cancer Res. 48, 5937–5940.

    PubMed  CAS  Google Scholar 

  15. Mohandas, J., Marshall, J.J., Duggin, G.G., Hovarth, J.S. and Tiller, D. (1984) Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res. 44, 5086–5091.

    PubMed  CAS  Google Scholar 

  16. Finney, D.J. (1964) Statistical Methods in Biological Assay. Hafner Publishing Co., New York, Charles Griffin & Co. Ltd., London, 2nd edn.

    Google Scholar 

  17. Videla, L.A., Fernandez, V., Ugarte, G. and Valenzuela, A. (1980) Effect of acute ethanol intoxication on the content of reduced glutathione of the liver in relation to its lipoperoxidative capacity in the rat. FEBS Lett. 111, 6–10.

    Article  PubMed  CAS  Google Scholar 

  18. Mac Donald, C.M., Dow, J. and Moore, M.R. (1977) A possible protective role for sulphydryl compounds in acute alcoholic liver injury, Biochem. Pharmacol. 26, 1529–1531.

    Article  CAS  Google Scholar 

  19. Sies, H. and Graf, P. (1985), Hepatic thiol and glutathione efflux under theinfluence of vasopressin, phenylephrine and adrenaline. Biochem. J. 226, 545–549.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, R., Aneja, R., Rewal, C. et al. An opium alkaloid-papaverine ameliorates ethanol-induced hepatotoxicity: Diminution of oxidative stress. Indian J Clin Biochem 15, 155–160 (2000). https://doi.org/10.1007/BF02883745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883745

Keywords

Navigation