Skip to main content
Log in

Intermittency in stochastically perturbed turbulent models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random dynamical models obtained as a perturbation of the GOY (Gledzer-Ohkitani-Yamada) shell model for three-dimensional turbulence are defined. Both static (time-independent) and dynamical scaling properties of the randomly perturbed model are studied. The random static-inviscid manifold, in contrast to the dynamical evolution, does not show intermittent scaling laws. This behavior is linked to the absence of large deviation in the random-map connecting fluctuations of velocities at different scales. The importance of inviscid conserved quantities on the intermittent statistics is discussed. Different random dynamical perturbations such that only energy is conserved in the inviscid and unforced limit are investigated. Intermittency is weakly affected by random perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch,Turbulence, (Cambridge University Press, UK, 1995).

    MATH  Google Scholar 

  2. C. M. Meneveau and K. R. Sreenivasan, “The multifractal nature of turbulent energy dissipation”J. Fluid. Mech. 224:429 (1991).

    Article  ADS  MATH  Google Scholar 

  3. R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems,”J. Phys. A 17:3521 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  4. V. N. Eesnyansky and E. A. Novikov, “Evolution of turbulence spectra to self-similar regime,”Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 10:127 (1974).

    Google Scholar 

  5. E. B. Gledzer, “System of hydrodynamic type admitting two quadratic integrals of motion,”Sov. Phys. Dokl. 18:216 (1973).

    ADS  MATH  Google Scholar 

  6. M. Yamada and K. Ohkitani, “The inertial subrange and non-positive Lyapunov exponents in fully developed turbulence,”Prog. Theor. Phys. 79:1265 (1988); M. Yamada and K. Ohkitani, “Temporal intermittency in the energy cascade processes and local Lyapunov analysis in fully developed model turbulence,”Prog. Theor. Phys. 81:329 (1989).

    Article  ADS  Google Scholar 

  7. M. H. Jensen, G. Paladin and A. Vulpiani, “Intermittency in a cascade model for three dimensional turbulence,”Phys. Rev. A 43:798 (1991).

    Article  ADS  Google Scholar 

  8. D. Pisarenko, L. Biferale, O. Courvoisier, U. Frisch and M. Vergassola, “Further results on multifractality in shell models,”Phys. Fluids A 5:2533 (1993).

    Article  ADS  MATH  Google Scholar 

  9. R. Benzi, L. Biferale and G. Parisi, “On intermittency in a cascade models of turbulence,”Physica D 65:163 (1993).

    Article  ADS  MATH  Google Scholar 

  10. E. Aurell, G. Boffetta, A. Crisanti, P. Frick, G. Paladin and A. Vulpiani, “Statistical mechanics of shell models for 2D-turbulence,”Phys. Rev. E 50:4705 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Biferale, M. Blank and U. Frisch, “Chaotic Cascades with Kolmogorov 1941 Scaling,”J. of Stat. Phys. 75:781 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. L. Kadanoff, D. Lohse, J. Wang, R. Benzi, “Scaling and Dissipation in the GOY shell model,”Phys. Fluids 7:617 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L. Biferale and R. Kerr, “On the role of inviscid invariants in shell models of turbulence,”Phys. Rev. E 52:6113 (1995);

    Article  ADS  Google Scholar 

  14. R. Benzi, L. Biferale, R. Kerr and E. Trovatore, “Helical shell models for three dimensional turbulence,”Phys. Rev. E 53:3541 (1996).

    Article  ADS  Google Scholar 

  15. O. Gat, I. Procaccia and R. Zeitak, “The breakdown of dynamical scaling and intermittency in a cascade model of turbulence,”Phys. Rev. E 51:1148 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Eggers, “Intermittency in dynamical model for turbulence,”Phys. Rev. A 46:1951 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. B. Mandelbrot, “Random multifractals: negative dimensions and the resulting limitations of the thermodynamic formalism,”Proc. R. Soc. Lond. A 434:79 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. S. Ellis,Entropy Large-Deviations and Statistical Mechanics, (Springer, Berlin 1985).

    Book  MATH  Google Scholar 

  19. P. Gaspard and X-J Wang, “Sporadicity: Between periodic and chaotic dynamical behaviors,”Proc. Natl. Acad. Soc. USA 85:4591 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. X-J Wang, “Statistical physics of temporal intermittency,”Phys. Rev. A 40:6647 (1989).

    Article  ADS  Google Scholar 

  21. A. Crisanti, G. Paladin and A. Vulpiani,Products of Random Matrices, (Springer Verlag, Berlin 1993).

    Book  MATH  Google Scholar 

  22. M. J. de Oleiveira and A. Petri, “Generalized Lyapunov Exponents for Products of Correlated Random Matrices,”Phys. Rev. E 53:2960 (1996).

    Article  ADS  Google Scholar 

  23. A. Crisanti, G. Paladin, H. J. Sommers and A. Vulpiani, “Replica trick and fluctuation in disordered systems,”J. Phys. 2:1325–1332 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biferale, L., Cencini, M., Pierotti, D. et al. Intermittency in stochastically perturbed turbulent models. J Stat Phys 88, 1117–1138 (1997). https://doi.org/10.1007/BF02732427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732427

Key words

Navigation