Skip to main content
Log in

The evolution of microstructure in Al-2 Pct Cu thin films: Precipitation, dissolution, and reprecipitation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The precipitation, dissolution, and reprecipitation processes of Al2Cu (θ phase) in Al-2 wt pct Cu thin films were studied. The films were characterized in the as-deposited condition, after annealing at 425 °C for 35 minutes, and after rapid thermal annealing (RTA) at 345 °C, 405 °C, and 472 °C. In the as-deposited samples, the precipitates had a fine even distribution throughout the thin film both at aluminum grain boundaries and within the aluminum grains. Annealing below the solvus temperature caused the grain boundary precipitates to grow and precipitates within the center of aluminum grains to diminish. Annealing above 425 °C caused the θ-phase precipitates to dissolve. Upon cooldown, the θ phase nucleated at aluminum grain boundaries and triple points in the form of plates.In situ heating and cooling experiments documented this process in real time. Analytical microscopy revealed that there is a depletion of copper at the aluminum grain boundaries in regions free of precipitates. The θ-phase precipitates nucleated and grew at the grain boundariesvia a collector plate mechanism and drew copper from the areas adjacent to the aluminum grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. d’Huerle:Proc. IEEE, 1971, vol. 59, p. 1409.

    Article  Google Scholar 

  2. I. Ames, F. M. d’Huerle, and R.E. Horstmann:IBM J. Res. Dev., 1970, vol. 14, pp. 461–63.

    CAS  Google Scholar 

  3. F. M. d’Heurle:Metall. Trans., 1971, vol. 2, pp. 683–89.

    CAS  Google Scholar 

  4. D. S. Herman, M. A. Schuster, and R. M. Gerber:J. Vac. Sci. Technol., 1972, vol. 9, p. 515.

    Article  CAS  Google Scholar 

  5. A. J. Learn:J. Electron. Mater., 1974, vol. 3, pp. 531–52.

    Article  CAS  Google Scholar 

  6. K. Y. Ahn, T. Lin, P. B. Madakson, and V. Hoffman: J. Electron. Mater., 1900.

  7. B. N. Argawala, B. Patnik, and R. Schnitzel:J. Vac. Sci. Technol., 1972, vol. 59, p. 1409.

    Google Scholar 

  8. M. C. Shine and F. M. d’Huerle:IBM J. Res. Dev., 1971, vol. 15, p. 378.

    Article  CAS  Google Scholar 

  9. P. S. Ho:Phys. Rev. B, 1973, vol. 8, pp. 4534–39.

    Article  CAS  Google Scholar 

  10. F. M. d’Heurle, N. G. Ainslie, A. Gangulee, and M. C. Shine:J. Vac. Sci. Technol., 1972, vol. 9, pp. 289–93.

    Article  CAS  Google Scholar 

  11. K. V. Reddy, F. Beniere, and D. Kostopoulos:J. Appl. Phys., 1979, vol. 50, pp. 2782–86.

    Article  CAS  Google Scholar 

  12. R. Rosenberg:J. Vac. Sci. Technol., 1972, vol. 9, pp. 263–70.

    Article  CAS  Google Scholar 

  13. J. E. Sanchez, D. R. Frear, and J. W. Morris, Jr.: Sandia National Laboratories, Albuquerque, NM and Lawrence Berkeley Laboratory, Berkeley, CA, 1989.

  14. P. A. Flinn, D. S. Gardner, and W. D. Nix:IEEE Trans. Electron Devices, 1987, vol. ED-34, pp. 689–99.

    CAS  Google Scholar 

  15. B. N. Argarwala, G. Digiacomo, and R. R. Joseph:Thin Solid Films, 1976, vol. 34, pp. 165–69.

    Article  Google Scholar 

  16. M. B. Chamberlain and S. L. Lehoczky:Thin Solid Films, 1977, vol. 45, pp. 189–94.

    Article  CAS  Google Scholar 

  17. A. D. Romig, Jr.: Sandia Report SAND82-2938, Sandia National Laboratories, Albuquerque, NM, Mar. 1983.

  18. A. D. Romig, Jr.:Defect and Diffusion Forum, 1988, vol. 59, pp. 179–96.

    Google Scholar 

  19. S. Mader and S. Herd:Thin Solid Films, 1972, vol. 10, p. 377.

    Article  CAS  Google Scholar 

  20. A. J. Learn:Thin Solid Films, 1974, vol. 20, p. 261.

    Article  CAS  Google Scholar 

  21. M. E. Thomas, T.K. Keyser, and E. K. Goo:J. Appl. Phys., 1986, vol. 59, pp. 3768–73.

    Article  CAS  Google Scholar 

  22. D.R. Denison and L.D. Hartsough:J. Vac. Sci. Technol., 1980, vol. 17, pp. 1326–31.

    Article  CAS  Google Scholar 

  23. D. B. Williams and A. D. Romig, Jr.:Ultramicroscopy, in press.

  24. D. McLean:Grain Boundaries in Metals, Clarendon Press, Oxford, United Kingdom, 1957, pp. 116–49.

    Google Scholar 

  25. H. B. Aaron and H. I. Aaronson:Acta Metall., 1968, vol. 16, p. 789.

    Article  CAS  Google Scholar 

  26. M. S. Arad, S. P. Murarka, R. P. Agarwala, and M. Cohen:J. Appl. Phys., 1965, vol. 36, p. 3860.

    Article  Google Scholar 

  27. A. D. Romig, Jr., N. Y. Pehlivanturk, and O. T. Inal: Diffusion Analysis and Applications, R. Hertal, A. D. Romig, Jr., and N. A. Dajaranda, eds., in press.

  28. M. Hansen:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Interface Science and Engineering” presented during the 1988 World Materials Congress and the TMS Fall Meeting, Chicago, IL, September 26–29, 1988, under the auspices of the ASM-MSD Surfaces and Interfaces Committee and the TMS Electronic Device Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frear, D.R., Sanchez, J.E., Romig, A.D. et al. The evolution of microstructure in Al-2 Pct Cu thin films: Precipitation, dissolution, and reprecipitation. Metall Trans A 21, 2449–2458 (1990). https://doi.org/10.1007/BF02646989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646989

Keywords

Navigation