Skip to main content
Log in

Microstructural dependence of Fe-high Mn tensile behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The tensile properties of Fe-high Mn (16 to 36 wt pct Mn) binary alloys were examined in detail at temperatures from 77 to 553 K. The Mn content dependence of the deformation and fracture behavior in this alloy system has been clarified by placing special emphasis on the starting microstructure and its change during deformation. In general, the intrusion of hcp epsilon martensite (ε) into austenite (γ) significantly increases the work hardening rate in these alloys by creating strong barriers to further plastic flow. Due to the resulting high work hardening rates, large amounts of e lead to high flow stresses and low ductility. Alloys of 16 to 20 wt pct Mn are of particular interest. While these alloys are thermally stable with respect to bcc α’ martensite formation, 16 to 20 wt pct Mn alloys undergo a deformation induced ε →α’ transformation. The martensitic transformation plays two contrasting roles. The stress-induced ε α’ transformation decreases the initial work hardening rate by reducing locally high internal stress. However, the work hardening rate increases as the accumulated α’ laths become obstacles against succeeding plastic flow. These rather complicated microstructural effects result in a stress-strain curve of anomolous shape. Since both the Ms and Md temperatures for both the ε and α’-martensite transformations are strongly dependent on the Mn content, characteristic relationships between the tensile behavior and the Mn content of each alloy are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. For example, J.W. Morris, Jr., S.K. Hwang, K. A. Yushchenko, V. T. Belotzerkovetz, and O. G. Kvasnerskii:Advances in Cryogenic Eng., 1978, vol. 24, pp. 91–101.

    CAS  Google Scholar 

  2. T. Inui, H. Sasaki, and Y. Senda:Bull. Japan Inst. Metals, 1982, vol. 21, pp. 541–45.

    CAS  Google Scholar 

  3. M. J. Schanfein, M. J. Yokota, V. F. Zackay, E. R. Parker, and J. W. Morris, Jr.: ASTM STP 579, 1975, pp. 361–27.

  4. A. Holden, J. D. Bolton, and E. R. Petty:J. Iron and Steel Inst., June 1962, pp. 721-28.

  5. C. H. White and R. W. K. Honeycomb:J. Iron and Steel Inst., June 1962, pp. 452-66.6. D. Duchateau and M. Guttman: Metal Sci., 1983, vol. 17, pp. 229-40.

  6. D. Duchateau and M. Guttman:Metal Sci., 1983, vol. 17, pp. 229–40.

    Article  CAS  Google Scholar 

  7. K. Ishida and T. Nishizawa:Trans. Japan Inst. Metals, 1974, vol. 15, pp. 225–31.

    Google Scholar 

  8. Y. Tomota and J. W. Morris, Jr.:Trans. Iron Steel Inst. Japan, 24:8, 1984, no. 8.

    Google Scholar 

  9. A. P. Midownik:Bull. Alloy Phase Diagrams, 1982, vol. 2, pp. 406–12.

    Google Scholar 

  10. H. H. Ettwig and W. Pepperhoff:Phys. Stat. Solidi, 23:2, 1974, pp. 105–11.

    Article  CAS  Google Scholar 

  11. E. Garstein and A. Rabinkin:Acta Metall., 1979, vol. 27, pp. 1053–64.

    Article  Google Scholar 

  12. S. Sawa:Bull. Japan Inst. Metals, 1979, vol. 18, pp. 573–81.

    CAS  Google Scholar 

  13. A. Sato, E. Chishima, Y. Yamaji, and T. Mori:Acta Metall., 1984, vol. 32, pp. 539–47.

    Article  Google Scholar 

  14. S. Takeuchi and T. Honma:J. Japan Inst. Metals, 1955, vol. 19, pp. 652–55. Z. Nishiyama: Martensitic Transformation, M. E. Fine, M. Meshii, and C.M. Wayman, eds., Academic Press, New York, NY, 1978, pp. 48-60.

    CAS  Google Scholar 

  15. H. Schuman:Arch. Eisenhutt., 1967, vol. 38, p. 647 and H. Schuman: Arch. Eisenhutt., 1969, vol. 40, pp. 1027-37.

    Google Scholar 

  16. S. K. Hwang and J. W. Morris, Jr.:Metall. Trans. A, 1979, vol. 10A, pp. 545–55.

    CAS  Google Scholar 

  17. H. J. Lee and J.W. Morris, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 913–20.

    Google Scholar 

  18. L. Remy and A. Pineau:Mater. Sci. Engr., 1977, vol. 28, pp. 99–107.

    Article  CAS  Google Scholar 

  19. I. Tamura:Metal Sci., 1982, vol. 16, pp. 245–53.

    CAS  Google Scholar 

  20. A. Sato, K. Soma, and T. Mori:Acta Metall., 1982, vol. 30, pp. 1901–07.

    Article  CAS  Google Scholar 

  21. Y. Shugo, K. Sakazume, S. Kato, and T. Honma:Tohoku Daigaku Senken-Iho, 1976, vol. 32, pp. 109–18.

    CAS  Google Scholar 

  22. H. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara:Acta Metall., 1977, vol. 25, pp. 1151–62.

    Article  Google Scholar 

  23. For example, Y. Tomota and I. Tamura:Trans. Iron and Steel Inst. Japan, 1982, vol. 22, pp. 665–77.

    Google Scholar 

  24. Y. Tomota, K. Tanabe, K. Kuroki, and I. Tamura:Trans. Iron and Steel Inst. Japan, 1977, vol. 17, pp. 159–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomota, Y., Strum, M. & Morris, J.W. Microstructural dependence of Fe-high Mn tensile behavior. Metall Trans A 17, 537–547 (1986). https://doi.org/10.1007/BF02643961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643961

Keywords

Navigation