Skip to main content
Log in

A model of transient oscillatory pressure-flow relationships of canine airways

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In a previous paper (27) we developed a lumped parameter model of canine pulmonary airway mechanics featuring airway wall elasticity, gas inertance, and laminar and turbulent gas flow. The model accurately accounted for the steadystate pressure-flow data we obtained during sinusoidal cycling of the lung following a period of apnea. In the present paper, we extend the model to account for the transient decrease in the amplitude of the trans-airway pressure swings that we observed immediately following the apnea, which we have shown to be due to a vagally mediated bronchodilatation reflex. The extended model accounts for this transient in terms of a sudden change in airway smooth muscle tone acting on the viscoelastic properties of the airway wall and tissues mechanically coupled to it. Consequently, this model is able to temporarily store a volume of gas in the conducting airway tree as its volume changes cyclically with that of the whole lung. This means that the flow entering the airway tree from the trachea at any instant (\(\dot V\)) is not precisely equal to that entering the alveoli (\(\dot V_{alv} \)) even when the gas is considered incompressible. We found that assuming\(\dot V\) to be equal to\(\dot V_{alv} \) can lead to errors in estimating respiratory tissue impedance of as much as 10%. However, tissue hysteresivity remained almost unaffected, suggesting that the hysteretic properties of respiratory system tissues and airway wall are well matched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnas, G. M., K. Yoshino, S. H. Loring, and J. Mead. Impedances and relative displacements of the relaxed chest wall up to 4 Hz.J. Appl. Physiol. 62:71–81, 1987.

    PubMed  CAS  Google Scholar 

  2. Barnas, G. M., C. F. Mackenzie, M. Skacel, S. C. Hempleman, K. M. Wicke, C. M. Skacel, and S. H. Loring. Amplitude dependency of regional chest wall resistance and elastance at normal breathing frequencies.Am. Rev. Respir. Dis. 140:25–30, 1989.

    PubMed  CAS  Google Scholar 

  3. Barnas, G. M., D. Stamenovic, and J. J. Fredberg. Proportionality between chest wall resistance and elastance.J. Appl. Physiol. 70:511–515, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Bartlett, D., and W. M. St. John. Adaptation of pulmonary stretch receptors in different mammalian species.Respir. Physiol. 37:303–312, 1979.

    Article  PubMed  Google Scholar 

  5. Bates, J. H. T., F. Shardonofsky, and D. E. Stewart. The low-frequency dependence of respiratory system resistance and elastance in normal dogs.Respir. Physiol. 78:369–382, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Bates, J. H. T., T. Abe, P. V. Romero, and J. Sato. Measurement of alveolar pressure in closed-chest dogs during flow interruption.J. Appl. Physiol. 67:488–492, 1989.

    PubMed  CAS  Google Scholar 

  7. Bates, J. H. T., K. A. Brown, and T. Kochi. Respiratory mechanics in the normal dog determined by expiratory flow interruption.J. Appl. Physiol. 67:2276–2285, 1989.

    PubMed  CAS  Google Scholar 

  8. Brusasco, V., D. O. Warner, K. C. Beck, J. R. Rodarte, and K. Rehder. Partitioning of pulmonary resistance in dogs: effect of tidal volume and frequency.J. Appl. Physiol. 66:1190–1196, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Csendes, T., B. Daroczy, and Z. Hantos. Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling. In:System Modelling and Optimization (Lecture Notes in Control and Information Sciences, vol. 84), edited by A. Prekopa and B. Strazicky. New York: Springer, 1986, pp. 188–192.

    Chapter  Google Scholar 

  10. Fredberg, J. J., D. H. Keefe, G. M. Glass, R. G. Castile, and I. D. Frantz, III. Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation.J. Appl. Physiol. 57:788–800, 1984.

    PubMed  CAS  Google Scholar 

  11. Fredberg, J. J., R. H. Ingram, R. G. Castile, G. M. Glass, and J. M. Drazen. Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules.J. Appl. Physiol. 58:1914–1922, 1985.

    PubMed  CAS  Google Scholar 

  12. Fredberg, J. J., and D. Stamenovic. On the imperfect elasticity of lung tissue.J. Appl. Physiol. 67:2408–2419, 1989.

    PubMed  CAS  Google Scholar 

  13. Hantos, Z., B. Daróczy, B. Suki, G. Galgóczy, and T. Csendes. Forced oscillatory impedance of the respiratory system at low frequencies.J. Appl. Physiol. 60:123–132, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Hantos, Z., B. Darcozy, B. Suki, and S. Nagy. Lowfrequency respiratory mechanical impedances in the rat.J. Appl. Physiol. 63:36–42, 1987.

    PubMed  CAS  Google Scholar 

  15. Hantos, Z., B. Daroczy, T. Csendes, B. Suki, and S. Nagy. Modeling of low-frequency pulmonary impedance in dogs.J. Appl. Physiol. 68:849–860, 1990.

    PubMed  CAS  Google Scholar 

  16. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs.J. Appl. Physiol. 72:168–178, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Hildebrandt, J., Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model.J. Appl. Physiol. 28:365–372, 1970.

    PubMed  CAS  Google Scholar 

  18. Kariya, S. T., L. M. Thompson, E. P. Ingenito, and R. H. Ingram. Effects of lung volume, volume history, and methacholine on lung tissue viscance.J. Appl. Physiol. 66:977–982, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Loring, S. H., J. M. Drazen, J. C. Smith, and F. C. Hoppin. Vagal stimulation and aerosol histamine increase hysteresis of lung recoli.J. Appl. Physiol. 51:477–484, 1981.

    PubMed  CAS  Google Scholar 

  20. Ludwig, M. S., I. Dreshaj, J. Solway, A. Munoz, and R. H. Ingram Jr. Partitioning of pulmonary resistance during constriction in the dog: effects of volume history.J. Appl. Physiol. 62:807–815, 1987.

    PubMed  CAS  Google Scholar 

  21. Ludwig, M. S., P. V. Romero, and J. H. T. Bates. A comparison of the dose-response behavior of canine airways and parenchyma.J. Appl. Physiol. 67:1220–1225, 1989.

    PubMed  CAS  Google Scholar 

  22. Ludwig, M. S., P. V. Romero, P. D. Sly, J. J. Fredberg, and J. H. T. Bates. Interpretation of interrupter resistance after histamine-induced constriction in the dog.J. Appl. Physiol. 68:1651–1656, 1990.

    PubMed  CAS  Google Scholar 

  23. Lutchen, K. R., and A. C. Jackson. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs.J. Appl. Physiol. 68:2128–2138, 1990.

    PubMed  CAS  Google Scholar 

  24. Michaelson, E. D., E. D. Grassman, and W. R. Peters. Pulmonary mechanics by spectral analysis of forced random noise.J. Clin. Invest. 56:1210–1230, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Peslin, R., C. Duvivier, H. Bekkari, E. Reichart, and C. Gallina. Stress adaptation and low-frequency impedance of rat lungs.J. Appl. Physiol. 69:1080–1086, 1990.

    PubMed  CAS  Google Scholar 

  26. Sato, J., B. L. K. Davey, F. Shardonofsky, and J. H. T. Bates. Low-frequency respiratory system resistance in the normal dog during mechanical ventilation.J. Appl. Physiol. 70:1536–1543, 1991.

    PubMed  CAS  Google Scholar 

  27. Sato, J., B. L. K. Davey, B. Suki, and J. H. T. Bates. Pressure-flow relationships of canine airways in vivo: development of an inverse model.J. Appl. Physiol. 76:923–932, 1994.

    PubMed  CAS  Google Scholar 

  28. Sly, P. D., and C. J. Lanteri. Differential responses of the airways and pulmonary tissues to inhaled histamine in young dogs.J. Appl. Physiol. 68:1562–1567, 1990.

    PubMed  CAS  Google Scholar 

  29. Suki, B., R. Peslin, C. Duvivier, and R. Farré. Lung impedance in healthy humans measured by forced oscillations from 0.01 to 0.1 Hz.J. Appl. Physiol. 67:1623–1629, 1989.

    PubMed  CAS  Google Scholar 

  30. Suki, B., Z. Hantos, B. Daroczy, G. Alkaysi, and S. Nagy. Nonlinearity and harmonic distortion of dog lungs measured with low-frequency forced oscillations.J. Appl. Physiol. 71:69–75, 1991.

    PubMed  CAS  Google Scholar 

  31. Vetterman, J., D. O. Warner, J.-F. Brichant, and K. Rehder. Halothane decreases both tissue and airway resitances in excised canine lungs.J. Appl. Physiol. 66:2698–2703, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suki, B., Davey, B.L.K., Sato, J. et al. A model of transient oscillatory pressure-flow relationships of canine airways. Ann Biomed Eng 23, 682–690 (1995). https://doi.org/10.1007/BF02584465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584465

Keywords

Navigation