Skip to main content
Log in

Otto Stern and the double bank shot

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

In analogy to a double surface scattering study of Estermann, Frisch and Stern for selecting and detecting the velocity of a beam of particles, it is proposed to use double surface scattering to investigate the collision dynamics of a beam of polarized particles with a known surface. In this proposed experiment, the first surface scattering event prepares a polarized (aligned/oriented) beam of particles, and the second surface scattering event permits the measurement of how the polarized beam interacts with the surface under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Estermann, I.: In: Recent research in molecular beams. Estermann, I. (ed.), pp. 1–7. New York: Academic Press 1959

    Google Scholar 

  2. Stern, O.: Z. Phys.7, 249 (1921)

    Google Scholar 

  3. Gerlach, W., Stern, O.: Z. Phys.8, 110 (1921);9, 349 (1922);9, 353 (1922)

    Google Scholar 

  4. Stern, O.: Z. Phys.2, 49 (1920);3, 417 (1920)

    Google Scholar 

  5. Stern, O.: Z. Phys.39, 751 (1926)

    Google Scholar 

  6. Lammert, B.: Z. Phys.56, 244 (1929)

    Google Scholar 

  7. Stern, O., Volmer, M.: Phys. Z.20, 183 (1919)

    Google Scholar 

  8. Estermann, I., Stern, O.: Z. Phys.61, 95 (1930)

    Google Scholar 

  9. Estermann, I., Frisch, O., Stern, O.: Z. Phys.73, 348 (1931). I thank Greg O. Sitz for bringing this reference to my attention; I also thank Klaus Rinnen for help in translating it

    Google Scholar 

  10. Engel, T., Rieder, K.H.: Structural studies of surfaces with atomic and molecular beam diffraction. Springer Tracts in Modern Physics 19. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  11. Boato, G., Cantini, P., Guidi, C., Tatarek, R., Felcher, G.P.: Phys. Rev. B20, 3957 (1979)

    Google Scholar 

  12. Brusdeylins, G., Toennies, J.P.: Surf. Sci.126, 647 (1983)

    Google Scholar 

  13. Brusdeylins, G., Doak, R.B., Toennies, J.P.: Phys. Rev. B27, 3662 (1983)

    Google Scholar 

  14. Gibson, K.D., Sibener, S.J.: Phys. Rev. Lett.55, 1514 (1985)

    Google Scholar 

  15. Kern, K., Zeppenfeld, P., David, R., Comsa, G.: Phys. Rev. Lett.59, 79 (1987)

    Google Scholar 

  16. The idea of using double surface scattering in which the first scattering event acts as a velocity selector has been extensively used by Mason and Williams to study inelastic scattering of He from various Cu surfaces or adsorbate-covered Cu surfaces. See: Mason, B.F., Williams, B.R.: Phys. Rev. Lett.46, 1138 (1981); Surf. Sci.111, 609 (1981);

    Google Scholar 

  17. Mason, B.F., Caudano, R., Williams, B.R.: J. Chem. Phys.77, 562 (1982);

    Google Scholar 

  18. Mason, B.F., McGreer, K., Williams, B.R.: Surf. Sci.130, 282 (1983);

    Google Scholar 

  19. Mason, B.F., Williams, B.R.: Surf. Sci.130, 295 (1983)

    Google Scholar 

  20. See: Madey, T.E., Brown, W.C. (eds.): History of vacuum science and technology. American Institute of Physics, New York, 1984. This book is a treasure trove of what it was like to work during a period when there was no commercially available demountable seals or valves, let alone mass spectrometric leak detectors

    Google Scholar 

  21. Frisch, R., Stern, O.: Z. Phys.84, 443 (1933). I thank S.J. Sibener for pointing out this work to me

    Google Scholar 

  22. Lennard-Jones, J.E., Devonshire, A.F.: Nature137, 1069 (1936)

    Google Scholar 

  23. Devonshire, A.F.: Proc. R. Soc. London A156, 37 (1936)

    Google Scholar 

  24. The need for such studies has been pointed out, for example, by Lauderdale, J.G., McNutt, J.F., McCurdy, C.W.: Chem. Phys. Lett.107, 43 (1984)

    Google Scholar 

  25. Muessig, P.R., Diebold, G.J.: Surf. Sci.165, L 59 (1986)

    Google Scholar 

  26. For a review, see: Brooks, P.R.: Science193, 11 (1976). The first scattering experiments with polarized molecular beams were reported in Toennies, J.P.: Disc. Faraday Soc.33, 96 (1962);

    Google Scholar 

  27. Bennewitz, H.G., Kramer, K.H., Paul, W., Toennies, J.P.: Z. Phys.177, 84 (1964)

    Google Scholar 

  28. Gandi, S.R., Curtiss, T.J., Xu, Q.X., Choi, S.E., Bernstein, R.B.: Chem. Phys. Lett.132, 6 (1986);

    Google Scholar 

  29. Gandi, S.R., Xu, Q.X., Curtiss, T.J., Bernstein, R.B.: J. Phys. Chem.91, 5437 (1987)

    Google Scholar 

  30. Jalink, H., Parker, D.H., Stolte, S.: J. Chem. Phys.85, 5372 (1986);

    Google Scholar 

  31. Jalink, H., Parker, D.H., Meiwes-Broer, K.H., Stolte, S.: J. Phys. Chem.90, 552 (1986);

    Google Scholar 

  32. Jalink, H., Stolte, S., Parker, D.H.: Chem. Phys. Lett.140, 215 (1987)

    Google Scholar 

  33. Karny, Z., Estler, R.C., Zare, R.N.: J. Chem. Phys.69, 5199 (1978);

    Google Scholar 

  34. Zare, R.N.: Ber. Bunsen Ges. Phys. Chem.86, 422 (1982);

    Google Scholar 

  35. Altkorn, R., Zare, R.N., Greene, C.H.: Mol. Phys.55, 1 (1985)

    Google Scholar 

  36. Hoffmeister, M., Schleysing, R., Loesch, H.: J. Phys. Chem.91, 5441 (1987)

    Google Scholar 

  37. Drullinger, R.E., Zare, R.N.: J. Chem. Phys.51, 5532 (1969);

    Google Scholar 

  38. Zare, R.N.: Mol. Photochem.4, 1 (1972);

    Google Scholar 

  39. Rettner, C.T., Zare, R.N.: J. Chem. Phys.77, 2416 (1982)

    Google Scholar 

  40. Hefter, U., Ziegler, G., Mattheus, A., Fischer, A., Bergmann, K.: Chem. Phys.85, 286 (1986)

    Google Scholar 

  41. Rothe, E.W., Ranjbar, F., Sinha, D.: Chem. Phys. Lett.78, 16 (1981);81, 175 (1981)

    Google Scholar 

  42. de Vries, M.S., Srdanov, V.I., Hanrahan, C.P., Martin, R.M.: J. Chem. Phys.77, 2688 (1982);78, 5582 (1983);

    Google Scholar 

  43. de Vries, M.S., Tyndall, G.W., Cobb, C.L., Martin, R.M.: J. Chem. Phys.86, 2653 (1987)

    Google Scholar 

  44. Luntz, A.C., Kleyn, A.W., Auerbach, D.J.: Phys. Rev. B25, 4273 (1982)

    Google Scholar 

  45. Kleyn, A.W., Luntz, A.C., Auerbach, D.J.: Surf. Sci.152/153, 99 (1985)

    Google Scholar 

  46. Sitz, G.O., Kummel, A.C., Zare, R.N.: J. Vac. Sci. Technol. A5, 513 (1987); J. Chem. Phys.87, 3247 (1987); J. Chem. Phys. (in press)

    Google Scholar 

  47. Novakoski, L.V., McClelland, G.M.: Phys. Rev. Lett.59, 1259 (1987)

    Google Scholar 

  48. By alignment we mean the preferential population of magnetic sublevels +M and −M as opposed to +M′ and −M′; this is equivalent to molecules in a stateJ≠0 having a preferred plane of rotation. By orientation we mean the preferential population of +M as opposed to −M; this is equivalent to molecules in a stateJ≠0 having a preferred sense of rotation. Thus, alignment refers to the even moments of the spatial distribution ofJ vectors, orientation to the odd moments. In general, a molecular ensemble can be both aligned and oriented

  49. I thank Melissa A. Hines for suggesting this idea

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare, R.N. Otto Stern and the double bank shot. Z Phys D - Atoms, Molecules and Clusters 10, 377–382 (1988). https://doi.org/10.1007/BF01384873

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384873

PACS

Navigation