Skip to main content
Log in

Nature of ambivalence effects in chemical reactivity

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Within the framework of different approaches (analysis of diabatic potential energy surfaces and analysis of orbital interactions for systems consisting of an attacking reagent and a substrate, chemical applications of density functional theory), the nature and effects of ambivalence in chemical reactivity have been interpreted. In terms of the concepts of dynamic and immanent ambivalence, the interrelations between reactivity, electronic spectra, and electrochemical characteristics of molecules are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. Fujimoto and K. Fukui, “Intermolecular interactions and chemical reactivity,” in: Chemical Reactivity and Reaction Paths, G. Klopman, ed., Wiley, New York (1974).

    Google Scholar 

  2. S. V. Volovik, N. S. Zefirov, and V. I. Staninets, “Ambivalence (nucleophilic-electrophilic dychotomy) in chemical reactions,” Dokl. Akad. Nauk Ukr. SSR, Ser. B, No. 10, 35–39 (1987).

    Google Scholar 

  3. S. V. Volovik, “The problem of ambivalence in organic reactions,” Teor. Éksp. Khim., 24, No. 3, 274–281 (1988).

    Google Scholar 

  4. S. V. Volovik and V. Staninets, “Ambivalence, reactivity, and regioselectivity in organic reactions,” Ukr. Khim. Zh., 55, No. 9, 992–1066 (1989).

    Google Scholar 

  5. R. G. Parr and R. G. Pearson, “Absolute hardness: Companion parameter to absolute electronegativity,” J. Am. Chem. Soc., 105, No. 26, 7512–7516 (1983).

    Google Scholar 

  6. M. Berkowith and R. G. Parr, “Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities,” J. Chem. Phys., 88, No. 4, 2554–2557 (1988).

    Google Scholar 

  7. M. V. Basilevsky, “Transition state stabilization energy as a measure of chemical reactivity,” Adv. Chem. Phys., 33, 345–398 (1975).

    Google Scholar 

  8. N. D. Epiotis, W. Cherry, S. Shaik, et al., “Structural theory of organic chemistry,” Top. Curr. Chem., 70, 1–250 (1977).

    Google Scholar 

  9. R. Parr, R. Donnelly, M. Levy, and W. Palke, “Electronegativity: The density functional viewpoint,” J. Chem. Phys., 68, No. 8, 3801–3807 (1978).

    Google Scholar 

  10. R. G. Parr and W. Yang, “Density functional approach to the frontier electron theory of chemical reactivity,” J. Am. Chem. Soc., 106, No. 14, 4049–4050 (1984).

    Google Scholar 

  11. K. Fukui, Theory of Orientation and Stereoselection, Springer, Berlin (1975).

    Google Scholar 

  12. J. Perdew, R. Parr, M. Levy, and J. Balduz, “Density-functional theory for fractional particle number: Derivative discontinuities of the energy,” Phys. Rev. Lett., 49, No. 23, 1691–1694 (1982).

    Google Scholar 

  13. A. R. Orsky and M. A. Whitehead, “Electronegativity in density functional theory: Diatomic bond energies and hardness parameters,” Can. J. Chem., 65, No. 8, 1970–1979 (1987).

    Google Scholar 

  14. Z. Zhou and R. G. Parr, “New measures of aromaticity: Absolute hardness and relative hardness,” J. Am. Chem. Soc., 111, No. 19, 7371–7379 (1989).

    Google Scholar 

  15. S. V. Volovik, V. I. Staninets, and N. S. Zefirov, “Immanent ambivalence of π-electron systems,” Dokl. Akad. Nauk Ukr. SSR, Ser. 8, No. 6, 40–44 (1988).

    Google Scholar 

  16. H. Fukutome, “Spin density wave and charge transfer wave in long conjugated molecules,” Prog. Theor. Phys., 40, No. 5, 998–1009 (1968).

    Google Scholar 

  17. H. Fukutome and M. Sasai, “Theory of electronic structures and lattice distortions in polyacetylene and itinerant Peierls systems. 1. UHF transfer matrix method adapted to the long range Coulomb interaction and UHF states in regular bond alternated lattice,” Prog. Theor. Phys., 67, No. 1, 41–67 (1982).

    Google Scholar 

  18. A. E. Belinskii, A. L. Chugreev, and I. A. Misurkin, “Different types of states of one-dimensional system of electrons in the approximation of the unrestricted Hartree-Fock method,” Teor. Éksp. Khim., 25, No. 5, 513–520 (1989).

    Google Scholar 

  19. S. Dähne, “Struktur prinzipien ungesättigter organischer Verbindungen,” Wiss. Z. Tech. Univ. (Dresden), 29, No. 1, 101–107 (1980).

    Google Scholar 

  20. H. Ichikawa, J. Aihara, and S. Daehne, “On the intrinsic difference between topological aromaticity and so-called quasi-aromaticity,” Bull. Chem. Soc. Jpn., 62, No. 9, 2798–2801 (1989).

    Google Scholar 

  21. R. Hoffmann, A. Imanura, and W. J. Hehre, “Benzynes, dehydroconjugated molecules and the interaction of Orbitals separated by a number of intervening a bonds,” J. Am. Chem. Soc., 90, No. 6, 1499–1509 (1968).

    Google Scholar 

  22. R. F. Nalewajski, “A study of electronegativity equalization,” J. Phys. Chem., 89, No.13, 2831–2837 (1985).

    Google Scholar 

  23. R. F. Nalewajski, “Recursive combination rules for molecular hardness and electronegativity,” J. Phys. Chem., 93, No. 6, 2658–2668 (1989).

    Google Scholar 

  24. Z. Zhou, R. G. Parr, and J. F. Garst, “Absolute hardness as a measure of aromaticity,” Tetrahedron Lett., 29, No. 38, 4843–4846 (1988).

    Google Scholar 

  25. L. N. Markovskii, V. D. Romanenko, and A. V. Ruban, The Chemistry of Alicyclic Compounds of Two-Coordinated Phosphorus [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  26. I. A. Misurkin and A. A. Ovchinnikov, “Electronic structure and properties of polymeric molecules with conjugated bonds,” Usp. Khim., 46, No. 10, 1835–1870 (1977).

    Google Scholar 

  27. L. G. S. Brooker, “Spectra of dye molecules. Absorption and resonance in dyes,” Rev.Mod. Phys., 14, No. 2/3, 275–293 (1942).

    Google Scholar 

  28. S. V. Volovik, G. G. Dyadyusha, and V. I. Staninets, Regioselectivity and Reactivity of Free Radicals in Processes of Addition and Aromatic Substitution [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  29. J. Fabian and H. Hartmann, “MO-LCAO calculations of polymethines. 21. Electrono-dative, electrono-captive, and electrono-ambident polymethine radicals,” J. Pract. Chem., 326, No. 3, 443–456 (1984).

    Google Scholar 

  30. R. Huisgen, “1,3-Dipolar cycloadditions — introduction, survey, mechanism,” in: 1,3-Dipolar Cycloaddition Chemistry, Wiley Interscience, New York (1984), Vol. 1, pp. 1–176.

    Google Scholar 

  31. R. A. Moss, “Carbenic reactivity revisited,” Acc. Chem. Res., 22, No. 1, 15–21 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 4, pp. 413–421, July–August, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovik, S.V., Staninets, V.I. & Zefirov, N.S. Nature of ambivalence effects in chemical reactivity. Theor Exp Chem 26, 390–398 (1991). https://doi.org/10.1007/BF00530251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00530251

Keywords

Navigation