Skip to main content
Log in

Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere

  • Part Two: The Taxonomy and Biology of Calanus
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

At least nine species of Calanidae occupy the area of interest, four in the Atlantic and five in the Pacific. All store wax esters and probably can undergo diapause. Latitudinally overlapping or onshore — offshore associations of two or more species occur in both oceans. Interzonals, with reduced mouth parts in the adult female, are endemic to the Pacific subarctic gyre where their life cycles are completed in one year. Presumably its nearly closed circulation and environmental stability have favored the evolution of endemic species well adapted to those conditions. Lack of ice- and/or salinity-induced stability also limits blooms there. The sub-arctic Atlantic contains several smaller oceanographic features, open to both arctic and Atlantic influences and populated by species of different origins, arctic species can behave as interzonals but may also require two or more years to complete their life cycles. Females may need to feed one year to reproduce the next and therefore they retain functional mouthparts. In some places in the North Atlantic, blooms may start in the sub-ice zone and seed the remaining euphotic zone. There the earliest stages of some the Calanus species can develop close to the ice, using primarily ice algae as food, while the remaining stages are adapted to utilize brief periods of intense primary production in the water column. Salinity-induced stability and shallow water favor blooms in the boundary waters of both oceans, which may be of greater importance in the Atlantic because of the proportionally greater area of continental shelf there. In both oceans the smaller species of Calanidae can produce up to three generations per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard, K., J. H. Swift & E. C. Carmack, 1985. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. 90C: 4833–4846.

    Google Scholar 

  • Alcaraz, M., G. -A. Paffenhöfer & J. R. Strickler, 1980. Catching the algae: a first account of visual observations on filter-feeding calanoids. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N. H.); Lond.: 241–248.

    Google Scholar 

  • Conover, R. J., 1962. Metabolism and growth in Calanus hyperboreus in relation to its life cycle. Rapp. Proc.-verb. Cons. int. Explor. Mer 153: 190–197.

    Google Scholar 

  • Conover, R. J., 1964. Food relations and nutrition of zooplankton. Proc. Symp. Experimental Marine Ecology, Grad. School Oceanogr., Univ. Rhode Island, Occ. Publ. No. 2: 81–91.

  • Conover, R. J., 1965. Notes on the molting cycle, development of sexual characters and sex ratio in Calanus hyperboreus. Crustaceana 8: 308–320.

    Google Scholar 

  • Conover, R. J., 1967. Reproductive cycle, early development, and fecundity in laboratory populations of the copepod Calanus hyperboreus. Crustaceana 13: 61–72.

    Google Scholar 

  • Conover, R. J. & E. D. S. Corner, 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U. K. 48: 49–75.

    Google Scholar 

  • Cooney, R. T., 1986. The seasonal occurrence of Neocalanus cristatus, Neocalanus plumchrus, and Eucalanus bungii over the shelf of the northern Gulf of Alaska. Cont. Shelf Res. 5: 541–553.

    Google Scholar 

  • Corkett, C. J., I. A. McLaren & J. -M. Sevigny, 1986. The rearing of the marine calanoid copepods Calanus finmarchicus (Gunnerus), C. glacialis Jaschnov and C. hyperboreus Krøyer with comment on the equiproportional rule. Proc. 2nd. Int Conf. Copepoda, Ottawa. Syllogeus 539–546.

  • Cushing, D. H., 1959. The seasonal variation in oceanic production as a problem in population dynamics. J. Cons. perm. int. Explor. Mer 24: 455–464.

    Google Scholar 

  • Fish, C. J., 1936. The biology of Calanus finmarchicus in the Gulf of Maine and Bay of Fundy. Biol. Bull. 70: 118–141.

    Google Scholar 

  • Fleminger, A., 1985. Dimorphism and possible sex change in copepods of the family Calanidae. Mar. Biol. 88: 273–294.

    Google Scholar 

  • Fleminger, A. & K. Hulsemann, 1977. Geographical range and taxonomic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis). Mar. Biol. 40: 233–248.

    Google Scholar 

  • Frost, B. W., 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar. Biol. 26: 77–99.

    Google Scholar 

  • Frost, B. W., M. R. Landry & R. P. Hassett, 1983. Feeding behavior of large calanoid copepods Neocalanus cristatus and N. plumchrus from the subarctic Pacific Ocean. Deep Sea Res. 30: 1–13.

    Google Scholar 

  • Fulton, J., 1973. Some aspects of the life history of Calanus plumchrus in the Strait of Georgia. J. Fish Res. Bd Can. 30: 811–815.

    Google Scholar 

  • Gatten, R. R., E. D. S. Corner, C. C. Kilvington & J. R. Sargent, 1979. A seasonal survey of the lipids in Calanus helgolandicus Claus from the English Channel. In E. Naylor & R. G. Hartnoll (eds), Cyclic Phenomena in Marine Plants and Animals. Pergamon Press, Oxford.: 275–284.

    Google Scholar 

  • Gatten, R. R., J. R. Sargent, T. E. V. Forsberg, S. C. M. O'Hara & E. D. S. Corner, 1980. On the nutrition and metabolism of zooplankton. XIV. Utilization of lipid by Calanus helgolandicus during maturation and reproduction. J. mar. biol. Ass. U. K. 60: 391–399.

    Google Scholar 

  • Grainger, E. H., 1959. The annual oceanographic cycle at Igloolik in the Canadian arctic. 1. The zooplankton and physical and chemical observations. J. Fish. Res. Bd Can. 16: 453–501.

    Google Scholar 

  • Grainger, E. H., 1961. The copepods Calanus glacialis Jaschnov and Calanus finmarchicus (Gunnerus) in Canadian arctic-subarctic waters. J. Fish Res. Bd Can. 18: 663–678.

    Google Scholar 

  • Hakanson, J. L., 1984. The long and short term feeding condition in field-caught Calanus pacificus, as determined from the lipid content. Limnol. Oceanogr. 29: 794–804.

    Google Scholar 

  • Hallberg, E. & H. -J. Hirche, 1980. Differentiation of mid-gut in adults and over-wintering copepodids of Calanus finmarchicus (Gunnerus) and C. helgolandicus Claus. J. exp. mar. Biol. Ecol. 48: 283–295.

    Google Scholar 

  • Head, E. J. H. & R. J. Conover, 1983. Induction of digestive enzymes in Calanus hyperboreus. Mar. Biol. Lett. 4: 219–231.

    Google Scholar 

  • Heinrich, A. K., 1957. The breeding and development of the dominant copepods in the Bering Sea. Trudy Veses. Gidrobiol. Obshch. 8: 143–162.

    Google Scholar 

  • Heinrich, A. K., 1962. On the production of copepods in the Bering Sea. Int. Revue ges. Hydrobiol. 47: 465–469.

    Google Scholar 

  • Geynrikh (Heinrich), A. K., 1968. Seasonal phenomena in the plankton of the northeast Pacific Ocean. Oceanology 8: 231–239.

    Google Scholar 

  • Hirche, H. -J., 1980. The cultivation of Calanoides carinatus Krøyer (Copepoda: Calanoida) under different temperature and food conditions — with a description of eggs and nauplii. J. mar. biol. Ass. U. K. 60: 115–125.

    Google Scholar 

  • Hirche, H. -J. & R. N. Bohrer, 1987. Reproduction of the arctic copepod Calanus glacialis in Fram Strait. Mar. Biol. 94: 11–17.

    Google Scholar 

  • Johnson, M. W., 1963. Arctic ocean zooplankton. Proc. Arctic Basin Symposium, October 1962. Arctic Institute of North America: 173–183.

  • Landry, M. R., 1983. The development of marine calanoid copepods with comment on the isochronal rule. Limnol. Oceanogr. 28: 614–624.

    Google Scholar 

  • Lee, R. F., 1974. Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season. Mar. Biol. 26: 313–318.

    Google Scholar 

  • Marshall, S. M., A. G. Nicholls & A. P. Orr, 1934. On the biology of Calanus finmarchicus. V. Seasonal distribution, size, weight and chemical composition in Loch Striven in 1933 and their relation to the phytoplankton. J. mar. biol. Ass. U. K. 19: 793–828.

    Google Scholar 

  • Marshall, S. M. & A. P. Orr, 1955. The biology of a marine copepod Calanus finmarchicus (Gunnerus). Oliver & Boyd, Edinburgh; Lond. 188 pp.

    Google Scholar 

  • McLaren, I. A., 1966. Predicting development rate of copepod eggs. Biol. Bull. 131: 457–469.

    Google Scholar 

  • Miller, C. B. & M. J. Clemons, in preparation. Revised life history analysis for large grazing copepods in the subarctic Pacific Ocean.

  • Miller, C. B., B. W. Frost, H. P. Batchelder, M. J. Clemons & R. E. Conway, 1984. Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific. Prog. Oceanog. 13: 201–243.

    Google Scholar 

  • Motoda, S. & T. Minoda, 1974. Plankton of the Bering Sea. In D. W. Hood & E. J. Kelly (eds), Oceanography of the Bering Sea. Inst. Mar. Sci., Univ. Alaska, Fairbanks: 207–241.

    Google Scholar 

  • Mullin, M. M. & E. R. Brooks, 1967. Laboratory culture, growth rate, and feeding behavior of a planktonic marine copepod. Limnol. Oceanogr. 12: 657–666.

    Google Scholar 

  • Mullin, M. M. & E. R. Brooks, 1970. Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food. In J. H. Steele (ed.), Marine Food Chains. Oliver & Boyd, Edinburgh: 74–95.

    Google Scholar 

  • Nicholls, A. G., 1933. On the biology of Calanus finmarchicus. III. Vertical distribution and diurnal migration in the Clyde Sea-area. J. mar. biol. Ass. U. K. 19: 139–164.

    Google Scholar 

  • Omori, M., 1967. Calanus cristatus and submergence of the Oyashio water. Deep Sea Res. 14: 525–532.

    Google Scholar 

  • Østvedt, O. -J., 1955. Zooplankton investigations from weather ship M in the Norwegian Sea, 1948–49. Hvalr. Skrift. 40: 1–93.

    Google Scholar 

  • Paffenhöfer, G. -A., 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wiss. Meeresunters. 20: 346–359.

    Google Scholar 

  • Paffenhöfer, G. -A., J. R. Strickler & M. Alcaraz, 1982. Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Mar. Biol. 67: 193–199.

    Google Scholar 

  • Peterson, W. T., 1979. Life history and ecology of Calanus marshallae Frost in the Oregon upwelling zone. Doctoral dissertation, Oregon State University.

  • Peterson, W. T., 1986. Development, growth, and survivorship of the copepod Calanus marshallae in the laboratory. Mar. Ecol. Prog. Ser. 29: 61–72.

    Google Scholar 

  • Runge, J. A., 1984. Egg production of the marine, planktonic copepod, Calanus pacificus Brodsky: laboratory observations. J. exp. mar. Biol. Ecol. 74: 53–66.

    Google Scholar 

  • Safronov, S. G., 1984. Ecology of the copepod Calanus glacialis from the Sea of Okhotsk. Sov. J. mar. Biol. 10: 200–203.

    Google Scholar 

  • Sargent, J. R., R. R. Gatten, E. D. S. Corner & C. C. Kilvington, 1977. On the nutrition and metabolism of zooplankton. XI. Lipids in Calanus helgolandicus grazing Biddulphia sinensis. J. mar. biol. Ass. U. K. 57: 525–533.

    Google Scholar 

  • Sargent, J. R. & K. J. Whittle, 1981. Lipids and hydrocarbons in the marine food web. In A. R. Longhurst (ed.), Analysis of Marine Ecosystems. Academic Press, Lond.: 491–533.

    Google Scholar 

  • Sekiguchi, H., 1974. Relation between the ontogenetic vertical migration and the mandibular gnathobase in pelagic copepods. Bull. Fac. Fish., Mie University 1974: 1–10.

    Google Scholar 

  • Smith, S. L. & J. Vidal, 1986. Variations in the distribution, abundance, and development of copepods in the southeastern Bering Sea in 1980 and 1981. Cont. Shelf Res. 5: 215–239.

    Google Scholar 

  • Tande, K. S. & C. C. E. Hopkins, 1981. Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: the genital system in Calanus finmarchicus and the role of gonad development in overwintering strategy. Mar. Biol. 63: 159–164.

    Google Scholar 

  • Tande, K. S., A. Hassel & D. Slagstad, 1985. Gonad maturation and possible life cycle strategies in Calanus finmarchicus and Calanus glacialis in the northwestern part of the Barents Sea. In J. S. Gray & M. E. Christiansen (eds), Marine Biology of Polar Regions and Effects of Stress on Marine Organisms. J. Wiley & Sons, N. Y.: 141–155.

    Google Scholar 

  • Vidal, J., 1980a. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 111–134.

    Google Scholar 

  • Vidal, J., 1980b. Physioecology of zooplankton. IV. Effects of phytoplankton concentration, temperature, and body size on the net production efficiency of Calanus pacificus. Mar. Biol. 56: 203–211.

    Google Scholar 

  • Wiborg, K. F., 1954. Investigations on zooplankton in coastal and offshore waters off western and northwestern Norway. Rep. norw. Fish. Invest. 11: 1–246.

    Google Scholar 

  • Williams, R., 1985. Vertical distribution of Calanus finmarchicus and C. helgolandicus in relation to the development of the seasonal thermocline in the Celtic Sea. Mar. Biol. 86: 145–149.

    Google Scholar 

  • Williams, R. & D. V. P. Conway, 1984. Vertical distribution, and seasonal and diurnal migration of Calanus helgolandicus in the Celtic Sea. Mar. Biol. 79: 63–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conover, R.J. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167, 127–142 (1988). https://doi.org/10.1007/BF00026299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026299

Key words

Navigation